
Feature extraction & classification toolbox
(FEATbox documentation)

Radomír Kůs
(September 2016)

FEATbox (Feature Extraction & clAssification Toolbox) is an outcome of attempts to compare feature

extraction and selection methods for schizophrenia classification based on magnetic resonance images

(MRI) of brains. Thus, the primary focus of the toolbox are various feature extraction techniques,

extracting features from 3-D images given in NIfTI format. Namely, Mann-Whitney testing is

implemented as a representative of univariate approaches with contrast to multivariate methods such

as intersubject PCA (isPCA), the K-SVD algorithm, and pattern-based morphometry (PBM). The

extracted features can be either examined more thoroughly or passed to a subsequent leave-one-out

cross-validated (LOOCV) linear support vector machine (SVM) classification. Also, several classification

measures are implemented in the toolbox for assessing and comparing classification performance of

different classification schemes.

Description

Despite its original purpose, the toolbox design enables to use data from various fields and problem

domains. The only rule is that the data must be arranged in a matrix with subjects in rows and features

in columns. The toolbox provides function to load NIfTI images (either 2-D or 3-D) contained in a folder

and put them in a vectorized form in such a matrix. Should the format of data be different, the data

matrix must be created manually. As real-world data matrices are often large, the toolbox supplies a

dimensionality reduction technique, random projection, in order to reduce computation times.

After data matrix is created, the toolbox can be used either as a feature extraction tool or as a

classification tool. Regarding the former, 4 feature extraction functions (one for each of the

aforementioned methods) are ready for those who aim to inspect the extracted features more

thoroughly or build their own classification scheme.

Speaking about the latter, FEATbox provides 4 classification functions varying in their feature

extraction step (again one for each of the aforementioned methods). The output of the functions are

classes predicted with SVM classifier. Both feature extraction and classification are nested in a LOOCV

loop. Subsequently, the predicted classes can be compared with the true ones in order to receive

statistical measures such as classification accuracy, etc. The toolbox also provides a function to

visualize the results for one or more classifiers in a multi-bar graph.

Prerequisites

Due to toolbox complexity, the toolbox requires several prerequisites to function properly:

1. NIfTI toolbox for manipulation with data in NIfTI format,

2. ksvdbox by Ron Rubinstein to run the K-SVD algorithm,

3. ompbox by Ron Rubinstein as a pursuit algorithm for ksvdbox.

Their current versions are attached to FEATbox (in the „prerequisites” folder) or they can be

downloaded from their respective websites.

When using random projection, make sure MATLAB has assigned enough heap memory as generation

of large random projection matrices can be very demanding.

Tutorials

The toolbox comes with example data and 3 tutorial demos. They demonstrate how to:

1. use toolbox build-in functions for simple and automated classification (see demo_class.m in

Appendix B: Automated classification tutorial),

2. use toolbox to create own classification scheme (see demo_class_manual.m in Appendix C:

Manual classification tutorial)

3. use toolbox to extract and assess features from data (see demo_extraction.m in Appendix D:

Feature extraction tutorial).

Notes to all tutorials:

1. In order to run the demo, you must either change „toolbox_path” to location of the demo on

your local disk or set your current working folder accordingly.

2. All FEATbox functions are accentuated with white spaces between brackets and arguments in

the code (e.g. [output] = func(input1, input2) instead of [output]=func(input1,input2)) so

that they can be recognized easily. In order to learn more about the function, please refer to

„help *function_name*” or Appendix A: Complete list of FEATbox functions attached below.

3. The example data (with a mask included) are artificial. All demos merely demonstrate how to

operate real datasets with the toolbox for feature extraction and classification purposes.

Short list of functions

FEATbox functions are divided into 4 main categories:

1. „ classify-* ” functions for automated classification,

2. „ extract-* ” functions for feature extraction,

3. other functions serving for data processing and performance evaluation,

4. „ p_* ” private functions mainly for inner purposes of the toolbox (p_ prefix = private).

Functions implemented in the toolbox are shortly listed in the following table (Table 1). Detailed

description about each of the functions can be found in Appendix A: Complete list of FEATbox

functions. Function names in the table serve as hyperlinks to their respective detailed descriptions.

Table 1: A short list of FEATbox functions (click on *function_name* to see detailed description).

Function name Brief description Input Output

classify_ispca

Perform a leave-one-out cross-validated
linear support vector machine
classification based on the most
discriminative features extracted with
intersubject principal component analysis.

X

group_ids
c

class_predicts

classify_ksvd

Perform a leave-one-out cross-validated
linear support vector machine
classification based on the features
extracted with the K-SVD algorithm

X

group_ids
rp_struct

a
s

class_predicts

classify_mw

Perform a leave-one-out cross-validated
linear support vector machine
classification based on features selected
with Mann-Whitney testing.

X

group_ids
t

class_predicts

classify_pbm

Perform a leave-one-out cross-validated
linear support vector machine
classification based on the most
discriminative features extracted with
pattern-based morphometry.

X

group_ids
rp_struct

a
k
s

class_predicts

extract_ispca

Transform data into a new feature space
spanned by the most discriminative (in
terms of ability of distinguishing between
the groups in data) isPCA components.

X

skip_ids
group_ids

c

X_ispca

X_skipped
proj_mat_discr
expl_var_discr

extract_ksvd

Transform data into a new feature space
spanned by atoms of a dictionary learned
by the K-SVD algorithm.

X

skip_ids
a
s

X_ksvd

X_skipped
dict

sparse_coeff

extract_mw

Reduce feature space by selecting the
most discriminative (in terms of ability of
distinguishing between the groups in data)
features on the basis of Mann-Whitney
testing.

X

skip_ids
group_ids

t

X_mw

X_skipped
selected_ids

p_MW

extract_pbm

Transform data into a new feature space
spanned by atoms of a dictionary learned
with pattern-based morphometry.

X

skip_ids
group_ids

a
k
s

X_pbm

X_skipped
dict

sparse_coeff

create_data_matrix

Create data matrix from NIfTI images
(with/without masking) in a folder.

dirname

files
mask

X

n_files
n_voxels

original_dim

display_nii

Load and display masked/unmasked NIfTI
image.

filename

mask

load_prerequisites

Check whether all FEATbox prerequisites
are in MATLAB search path and, if not,
include them.

dirname

remember

performance_disp

Display classification measures in a
grouped multi-bar plot for each
classification.

CP

measures
names
f_title

f_legend

performance_eval

Evaluate classification performance.

true_class
predictions

positive_label

accur
sens
spec

precis
cm

random_projection

Reduce matrix dimension with Gaussian or
Achlioptas random projection.

X

k_desired
type

X_red

rp_matrix
k

p_gen_diff_im

Generate a matrix of a difference images.

group1
group2

k

diff_images

p_ispca

Compute a projection matrix of
intersubject principal component analysis.

X

X_proj

explained_var

p_preproc

Private function for preprocessing
(dividing and centering) data.

X

omit_ids
group_ids

X_used_c
X_omit_c

used_g_ids
omit_g_ids

Appendix A: Complete list of FEATbox functions

classify_ispca

Perform a leave-one-out cross-validated linear support vector machine classification based on the
most discriminative features extracted with intersubject principal component analysis (isPCA).

Syntax:
[class_predicts] = classify_ispca(X, group_ids, c)

Input arguments:
 X data matrix with subjects in rows and features in columns
 group_ids vector of group identifiers corresponding to subjects (rows) in X
 c number of the most discriminative components to be used for classification;

the maximum possible value is N-2, where N is the number of subjects
(rows) in X

Output arguments:
 class_predicts vector of classes predicted by SVM classifier to each subject

Description:
A linear support vector machine (SVM) classifier is used to perform a leave-one-out cross-
validated (CV) classification of subjects given in „X“. In each iteration, the data matrix is divided
into training and testing datasets. Next, intersubject PCA [1] is utilized to derive a projection
matrix from the training data in order to reduce the dimensionality of the problem. To enhance
the classification, p-values resulting from Mann-Whitney testing are exploited to select only
„c“ components with the best discriminative power of distinguishing between the groups. Those
components span a feature space where the SVM classification takes place. Note that such a CV
scheme correctly involves feature extraction in its every step.

Example:
predicted_classes = classify_ispca(Subjects, subject_group_ids, 16);

Reference:
[1] E. Janousova, D. Schwarz, and T. Kasparek: „Combining Various Types of Classifiers and

Features Extracted from Magnetic Resonance Imaging Data in Schizophrenia Recognition.”,
Psychiatry Research: Neuroimaging, Vol. 232, No. 3, 2015, pp. 237–49.

classify_ksvd

Perform a leave-one-out cross-validated linear support vector machine classification based on the
features extracted with the K-SVD algorithm.

Syntax:
[class_predicts] = classify_ksvd(X, group_ids, rp_struct, a, s)

Input arguments:
 X data matrix with subjects in rows and features in columns
 rp_struct structure array with random projection settings:
 - rp_struct.p fraction of columns to retain / desired number of columns in reduced

data matrix
 - rp_struct.t type of random projection matrix; 'A' (default) for Achlioptas, 'G' for

Gaussian
(for more information use „help random_projection“)

 a number of atoms in dictionary / dimension of the new feature space;
the maximum possible value is N-1, where N is the number of
subjects (rows) in X

 s sparsity constraint for K-SVD coefficient matrix; default = 5

Output arguments:
 class_predicts vector of classes predicted by SVM classifier to each subject

Description:
A linear support vector machine (SVM) classifier is used to perform a leave-one-out cross-
validated (CV) classification of subjects given in „X“. In each iteration, the data matrix is divided
into training and testing datasets. Next, the training dataset is utilized to learn a data-driven
dictionary with the K-SVD algorithm [1]. Atoms in the dictionary span a new feature space where
the SVM classification takes place. Note that such a CV scheme correctly involves feature
extraction in its every step.

Examples:
RP.p = 1/100; % multiplier to reduce the length of descriptors with

RP.t = 'A'; % Achlioptas matrix
predicted_classes = classify_ksvd(Subjects, subject_group_ids, RP, 6, 3);
predicted_classes = classify_ksvd(Subjects, subject_group_ids, {}, 9);

Reference:
[1] M. Aharon, M. Elad, and A. Bruckstein: „K-SVD: An Algorithm for Designing Overcomplete

Dictionaries for Sparse Representation.”, IEEE Transactions on Signal Processing, Vol. 54, No.
11, 2006, pp. 4311–22.

Note:
Requires ksvdbox and ompbox by Ron Rubinstein.

classify_mw

Perform a leave-one-out cross-validated linear support vector machine classification based on features
selected with Mann-Whitney testing.

Syntax:
[class_predicts] = classify_mw(X, group_ids, t)

Input arguments:
 X data matrix with subjects in rows and features in columns
 group_ids vector of group identifiers corresponding to subjects (rows) in X
 t threshold for Mann-Whitney p-values; features with lower p-values than t

are selected for the classification

Output arguments:
 class_predicts ... vector of classes predicted by SVM classifier to each subject

Description:
A linear support vector machine (SVM) classifier is used to perform a leave-one-out cross-
validated (CV) classification of subjects given in „X“. In each iteration, the data matrix is divided
into training and testing datasets. Next, the training dataset is subject to Mann-Whitney testing
for each feature. The p-values resulting from the testing are exploited to select only the features
with a higher discriminative power than given by the threshold „t“. A subsequent SVM
classification takes place in the reduced feature space. Note that such a CV scheme correctly
involves feature selection in its every step.

Example:
predicted_classes = classify_mw(Subjects, subject_group_ids, 0.01);

classify_pbm

Perform a leave-one-out cross-validated linear support vector machine classification based on the
features extracted with pattern-based morphometry.

Syntax:
[class_predicts] = classify_pbm(X, group_ids, rp_struct, a)
[class_predicts] = classify_pbm(X, group_ids, rp_struct, a, k)
[class_predicts] = classify_pbm(X, group_ids, rp_struct, a, k, s)

Input arguments:
 X data matrix with subjects in rows and features in columns
 group_ids vector of group identifiers corresponding to subjects (rows) in X
 rp_struct structure array with random projection settings:
 - rp_struct.p fraction of columns to retain / desired number of columns in reduced

data matrix
 - rp_struct.t type of random projection matrix; 'A' (default) for Achlioptas, 'G' for

Gaussian
(for more information use „help random_projection“)

 a number of atoms in dictionary / dimension of the new feature space;
the maximum possible value is (N-1)*k,where N is the number of
subjects (rows) in X

 k number of nearest neighbours to use when generating difference
images; default = 3
(for more information use „help p_gen_diff_im“)

 s sparsity constraint for K-SVD coefficient matrix; default = 5

Output arguments:
 class_predicts vector of classes predicted by SVM classifier to each subject

Description:
A linear support vector machine (SVM) classifier is used to perform a leave-one-out cross-
validated (CV) classification of subjects given in „X“. In each iteration, the data matrix is divided
into training and testing datasets. Next, a difference images matrix is generated (see „help
p_gen_diff_im“) from dataset of the training dataset. The matrix is utilized to learn a data-driven
dictionary with the K-SVD algorithm [1]. Atoms in the dictionary span a new feature space where
the SVM classification takes place. Note that such a CV scheme correctly involves feature
extraction in its every step.
For further reading on pattern-based morphometry please refer to [2].

Examples:
RP.p = 1/100; % multiplier to reduce the length of descriptors with

RP.t = 'A'; % Achlioptas matrix
predicted_classes = classify_pbm(Subjects, subject_group_ids, RP, 49);
predicted_classes = classify_ksvd(Subjects, subject_group_ids, {}, 3, 5, 2);

References:
[1] M. Aharon, M. Elad, and A. Bruckstein: „K-SVD: An Algorithm for Designing Overcomplete

Dictionaries for Sparse Representation.“, IEEE Transactions on Signal Processing, Vol. 54, No.
11, 2006, pp. 4311–22.

[2] B. Gaonkar, K. Pohl, and C. Davatzikos: „Pattern Based Morphometry.“ Medical Image
Computing and Computer-Assisted Intervention, Vol. 14, No. Pt 2, 2011, pp. 459–66.

extract_ispca

Transform data into a new feature space spanned by the most dicriminative (in terms of ability of
distinguishing between the groups in data) isPCA components.

Syntax:
[X_ispca, X_skipped, proj_mat_discr, expl_var_discr] = extract_ispca(X,

skip_ids, group_ids, c)

Input arguments:
 X data matrix with subjects in rows and features in columns
 skip_ids vector of subject indices to omit from feature extraction (i.e. rows in

X specified by the argument will not be used to derive isPCA
projection matrix); to use all the subjects, use an empty vector

 group_ids vector of group identifiers corresponding to subjects (rows) in X
 c number of the most discriminative components / dimension of the

new feature space; the maximum possible value is N-M-1, where N
is the number of subjects (rows) in X and M is the number of indices
specified in skip_ids

Output arguments:
 X_ispca data matrix of subjects not specified in skip_ids (i.e. used in feature

extraction) projected onto c most discriminative isPCA components
 X_skipped data matrix of subjects specified in skip_ids (i.e. omitted from feature

extraction) projected onto c most discriminative isPCA components
 proj_mat_discr projection matrix consisting of c most discriminative isPCA

components
 expl_var_discr vector of relative amount of variability explained by each of c most

discriminative isPCA components

Description:
First, subjects specified in „skip_ids“ are taken out of „X“, thus creating a data matrix of retained
subjects. Next, intersubject PCA [1] is utilized to derive a projection matrix from the retained data.
Subsequently, p-values resulting from Mann-Whitney testing are exploited to select only
„c“ components with the best discriminative power of distinguishing between the groups in
retained data. Last, both the retained and skipped data are projected onto a feature space
spanned by the components.

Examples:
X_projected = extract_ispca(X, [], group_ids, 19); % use all subjects
[X_re, X_om, PM, ex_var] = extract_ispca(X, 7, g_ids, 6);
[Subj_proj, T_and_P_proj] = extract_ispca(Subjects,[tested_image paired_image],

subject_group_ids, 14);

Reference:
[1] E. Janousova, D. Schwarz, and T. Kasparek: „Combining Various Types of Classifiers and

Features Extracted from Magnetic Resonance Imaging Data in Schizophrenia Recognition.”,
Psychiatry Research: Neuroimaging, Vol. 232, No. 3, 2015, pp. 237–49.

extract_ksvd

Transform data into a new feature space spanned by atoms of a dictionary learned by the K-SVD
algorithm.

Syntax:
[X_ksvd, X_skipped, dict, sparse_coeff] = extract_ksvd(X, skip_ids, a)
[X_ksvd, X_skipped, dict, sparse_coeff] = extract_ksvd(X, skip_ids, a, s)

Input arguments:
 X data matrix with subjects in rows and features in columns
 skip_ids vector of subject indices to omit from feature extraction (i.e. rows in X

specified by the argument will not be used to derive K-SVD dictionary); to
use all the subjects, use an empty vector

 a number of atoms in dictionary / dimension of the new feature space; the
maximum possible value is N-M, where N is the number of subjects (rows)
in X and M is the number of indices specified in skip_ids

 s sparsity constraint for K-SVD coefficient matrix; default = 5

Output arguments:
 X_ksvd data matrix of subjects not specified in skip_ids (i.e. used in feature

extraction) projected onto K-SVD atoms
 X_skipped data matrix of subjects specified in skip_ids (i.e. omitted from feature

extraction) projected onto K-SVD atoms
 dict K-SVD dictionary (can be considered as a projection matrix)
 sparse_coeff sparse coefficient K-SVD matrix

Description:
First, subjects specified in „skip_ids“ are taken out of „X“, thus creating a data matrix of retained
subjects. Next, the matrix is utilized to learn a data-driven dictionary with the K-SVD algorithm [1].
Last, both the retained and skipped data are projected onto a feature space spanned by atoms in
the dictionary.

Examples:
X_pr = extract_ksvd(X, 6, 19);
[X_projected, ~, D, C] = extract_ksvd(X, [], 17); % use all subjects
[Subj_proj, T_and_P_proj] = extract_ksvd(Subjects, [tested_image paired_image], 6,

3);

Reference:
[1] M. Aharon, M. Elad, and A. Bruckstein: „K-SVD: An Algorithm for Designing Overcomplete

Dictionaries for Sparse Representation.“, IEEE Transactions on Signal Processing, Vol. 54, No.
11, 2006, pp. 4311–22.

Note:
Requires ksvdbox and ompbox by Ron Rubinstein.

extract_mw

Reduce feature space by selecting the most dicriminative (in terms of ability of distinguishing between
the groups in data) features on the basis of Mann-Whitney testing.

Syntax:
[X_mw, X_skipped, selected_ids, p_MW] = extract_mw(X, skip_ids, group_ids)
[X_mw, X_skipped, selected_ids, p_MW] = extract_mw(X, skip_ids, group_ids, t)

Input arguments:
 X data matrix with subjects in rows and features in columns
 skip_ids vector of subject indices to omit from featureextraction (i.e. rows in X

specified by theargument will not be subject to Mann-Whitney testing);
to use all the subjects, use an empty vector

 group_ids vector of group identifiers corresponding to subjects (rows) in X
 t threshold for Mann-Whitney p-values; features with lower p-values than

t are selected to compose the reduced feature space, the rest are
disregarded; default = 0.05

Output arguments:
 X_mw data matrix of subjects not specified in skip_ids (i.e. used in Mann-

Whitney testing) in reduced feature space
 X_skipped data matrix of subjects specified in skip_ids (i.e. omitted from Mann-

Whitney testing) in reduced feature space
 selected_ids vector of logical values showing whether a feature composes reduced

feature space (i.e. was selected) or not
 p_MW vector of p-values resulting from Mann-Whitney testing

Description:
First, subjects specified in „skip_ids“ are taken out of „X“, thus creating a data matrix of retained
subjects. Next, the retained data are subject to Mann-Whitney testing for each feature. The
resulting p-values are exploited to select only the features with a higher discriminative power than
given by the threshold „t“. Subsequently, the features which were not selected in the testing are
disregarded from the matrices of both retained and skipped subjects, reducing their
dimensionality.

Examples:
X_red = extract_mw(X, [], group_ids); % use all subjects
[~, ~, selected_features, p_values] = extract_mw(X, 7, g_ids, 0.01);
[Subj_red, T_and_P_red] = extract_mw(Subjects, [tested_image paired_image],

subject_group_ids, 0.01);

extract_pbm

Transform data into a new feature space spanned by atoms of a dictionary learned with pattern-based
morphometry.

Syntax:
[X_pbm, X_skipped, dict, sparse_coeff] = extract_pbm(X, skip_ids, group_ids, a)
[X_pbm, X_skipped, dict, sparse_coeff] = extract_pbm(X, skip_ids, group_ids, a, k)
[X_pbm, X_skipped, dict, sparse_coeff] = extract_pbm(X, skip_ids, group_ids, a, k, s)

Input arguments:
 X data matrix with subjects in rows and features in columns
 skip_ids vector of subject indices to omit from feature extraction (i.e. rows in X

specified by the argument will not be used to derive PBM dictionary); to
use all the subjects, use an empty vector

 group_ids vector of group identifiers corresponding to subjects (rows) in X
 a number of atoms in dictionary / dimension of the new feature space; the

maximum possible value is (N-M)*k, where N is the number of subjects
(rows) in X and M is the number of indices specified in skip_ids

 k number of nearest neighbours to use when generating difference
images; default = 3 (for more information use „help p_gen_diff_im“)

 s sparsity constraint for K-SVD coefficient matrix; default = 5

Output arguments:
 X_pbm data matrix of subjects not specified in skip_ids (i.e. used in feature

extraction) projected onto PBM atoms
 X_skipped data matrix of subjects specified in skip_ids (i.e. omitted from feature

extraction) projected onto PBM atoms
 dict PBM dictionary (can be considered as a projection matrix)
 sparse_coeff sparse coefficient PBM matrix

Description:
First, subjects specified in „skip_ids“ are taken out of „X“, thus creating a data matrix of retained
subjects. Next, a difference images matrix is generated (see „help p_gen_diff_im“) from dataset
of retained subjects. The matrix is utilized to learn a data-driven dictionary with the K-SVD
algorithm [1]. Last, both the retained and skipped data are projected onto a feature space
spanned by atoms in the dictionary.
For further reading on pattern-based morphometry please refer to [2].

Examples:
X_pr = extract_pbm(X, 6, group_ids, 57);
[X_projected , ~, D, C] = extract_pbm(X, [], g_ids, 6, 5); % use all subjects
[Subj_proj, T_and_P_proj] = extract_pbm(Subjects, [tested_image paired_image],

46, 7, 5);

References:
[1] M. Aharon, M. Elad, and A. Bruckstein: „K-SVD: An Algorithm for Designing Overcomplete

Dictionaries for Sparse Representation.“, IEEE Transactions on Signal Processing, Vol. 54, No.
11, 2006, pp. 4311–22.

[2] B. Gaonkar, K. Pohl, and C. Davatzikos: „Pattern Based Morphometry.“ Medical Image
Computing and Computer-Assisted Intervention, Vol. 14, No. Pt 2, 2011, pp. 459–66.

create_data_matrix

Create data matrix from NIfTI images (with/without masking) in a folder.

Syntax:
[X, n_files, n_voxels, original_dim] = create_data_matrix(dirname, files)
[X, n_files, n_voxels, original_dim] = create_data_matrix(dirname, files, mask)

Input arguments:
 dirname name of a folder containing the images
 files vector of file names of images in NIfTI format; images must be of the same

dimensions
 mask mask to be applied to the images; dimensions of the mask and images must

agree

Output arguments:
 X data matrix with vectorized images in rows
 n_files number of processed files (equals number of rows)
 n_voxels number of pixels/voxels in one image
 original_dim original dimensions of the images

Description:
NIfTI toolbox function „load_nii“ is utilized to load images contained in a folder and assemble
them (vectorized) into a matrix as its rows. Moreover, a mask can be applied to the images.

Examples:
X = create_data_matrix('C:\Users\...\', [image1.nii image2.nii]);
[X, n_subjects, n_voxels, X_dim] = create_data_matrix('C:\Users\...\',

[image1.nii image2.nii], mask);

Note:
Requires NIfTI toolbox.

display_nii

Load and display masked/unmasked NIfTI image.

Syntax:
display_nii(filename)
display_nii(filename, mask)

Input arguments:
 filename file name of an image in NIfTI format
 mask mask to be applied to the image; dimensions of the mask and image

specified in filename must agree

Description:
NIfTI toolbox functions „load_nii“ and „view_nii“ are wrapped into a function in order to enable
loading and displaying images with one call. Moreover, a mask can be applied to the images.

Example:
display_nii('C:\Users\...\image.nii', mask);

Note:
Requires NIfTI toolbox.

load_prerequisites

Check whether all FEATbox prerequisites are in MATLAB search path and, if not, include them.

Syntax:
load_prerequisites(dirname)
load_prerequisites(dirname, remember)

Input arguments:
 dirname name of a folder containing FEATbox prerequisites
 remember logical value whether to save FEATbox into MATLAB search path

permanently or not

Description:
All external functions and toolboxes (namely NIfTI toolbox, ksvdbox, ompbox, multicols.m and
normcols.m) are checked to be in MATLAB search path and, if not, they are added. When added
permanently („remember“=1), the FEATbox itself is saved in MATLAB search path. Otherwise,
FEATbox path must be a current working directory while working with the toolbox.

Examples:
load_prerequisites('C:\Users\...\');
load_prerequisites('C:\Users\...\', 1);

Note:
The „example_data“ directory is not added to the path as it is not necessary for FEATbox to
function.

performance_disp

Display classification measures in a grouped multi-bar plot for each classification.

Syntax:
performance_disp(CP, measures)
performance_disp(CP, measures, names)
performance_disp(CP, measures, names, f_title)

Input arguments:
 CP Classification performance matrix with classification measures (columns) for

each classification (rows).
 measures vector of 4 logical values implying what statistical measures are in columns

of CP:
 - accuracy
 - sensitivity
 - specificity
 - precision
 e.g. [1, 0, 1, 1] means that CP matrix has 3 columns (accuracy, specificity and

precision)
 names cell array consisting of names to display on x-axis of the figure corresponding

to rows in CP
 f_title title of the figure
 f_legend location of legend in the figure; when set to 'hide', no legend is displayed;

default = 'northeast' (for more information on possible location values use
„help legend“ and scroll to „Location“)

Description:
Classification measures for each classifier given in „CP“ are displayed in a grouped multi-bar plot.
Required arguments are the classification performance matrix and a vector of statistical measures
to display.

Example:
CP = [0.8 0.7 0.9; 0.7 0.5 0.9]; % classification performance matrix
measures = [1 1 1 0]; % show accuracy, sensitivity and specificity / disregard

precision

performance_disp(CP, measures, {'3-NN', '5-NN'}, 'My Results', 'northwest');

performance_eval

Evaluate classification performance.

Syntax:
[accur, sens, spec, precis, cm] = performance_eval(true_class, predictions,

positive_label)

Input arguments:
 true_class vector with true class identifiers
 predictions vector with predicted class identifiers
 positive_label identifier of a group with a positive condition (e.g. patients)

Output arguments:
 accur classification accuracy
 sens sensitivity
 spec specificity
 precis precision
 cm confusion matrix

Description:
Given true and predicted classes, a classification performance can be evaluated.

Examples:
[accur, sens, spec, precis, cm] = performance_eval(g_ids, pred_class, 1);

class_accuracy = performance_eval(['A', 'A', 'B', 'A', 'B', 'B'], ['A', 'B', 'A', 'A', 'B', 'B'],
'B');

random_projection

Reduce matrix dimension with Gaussian/Achlioptas random projection.

Syntax:
[X_red, rp_matrix, k] = random_projection(X, k_desired)
[X_red, rp_matrix, k] = random_projection(X, k_desired, type)

Input arguments:
 X data matrix to be reduced [n x m]
 k_desired fraction of columns to retain / desired number of columns in reduced

data matrix
 type type of random projection matrix; 'A' (default) for Achlioptas, 'G' for

Gaussian

Output arguments:
 X_rp reduced data matrix [n x k]
 RP_matrix random projection matrix [m x k]
 k number of columns in reduced data matrix

Description:
Random projection is a dimensionality reduction technique which enables reducing
dimensionality of a data matrix X [n x m] by multiplying it with a random projection matrix
RP [m x k] as follows:

X_red = 1/sqrt(k)*X*RP,
while preserving all pairwise Euclidean distances of X. Such a behaviour is possible when entries
of RP matrix follow distribution with zero mean and constant variance (e.g. Gaussian). A simple
distribution (‘very sparse’) complying with the rule was suggested by Achlioptas [1].
For further reading please refer to [2].

Examples:
X_red = random_projection(X, 540);
[Subjects_red, RP_matrix, red_n_voxels] = random_projection(Subjects, 1/1000,

'G');

References:
[1] D. Achlioptas. 2003. Database-friendly random projections: Johnson-Lindenstrauss with binary

coins. Journal of Computer and System Sciences, 66(4), 671–687.
[2] Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. Very sparse random projections. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD ‘06). ACM, New York, NY, USA, 287-296.

Note:
Make sure MATLAB has assigned enough heap memory as generation of large random projection
matrices can be very demanding.

p_gen_diff_im

Generate a matrix of a difference images.

Syntax:
[diff_images] = p_gen_diff_im(group1, group2, k)

Input arguments:
 group1 matrix of subjects from the first group with vectorized subjects in rows and

features in columns; the number of features between groups must be the
same

 group2 matrix of subjects from the first group with vectorized subjects in rows and
features in columns; the number of features between groups must be the
same

 k number of nearest neighbours to use when generating difference images

Output arguments:
 diff_images matrix of difference images in rows

Description:
For each image, using the Euclidean distance, a set of its k-nearest neighbors with a different
affiliation is found. In other words, for an image a belonging to the group 1, its k most similar
images belonging to the group 2 are searched for and vice-versa. Subsequently, the images are
subtracted from their neighbors. In the end, the resulting difference images matrices together
into a single matrix. Assuming the images are in rows, the new matrix will have k-times more rows
than the original matrix.
For further reading please refer to [1].

Example:
X = p_gen_diff_im(Patients, Controls, 3);

Reference:
[1] B. Gaonkar, K. Pohl, and C. Davatzikos: „Pattern Based Morphometry.” Medical Image

Computing and Computer-Assisted Intervention, Vol. 14, No. Pt 2, 2011, pp. 459–66.

p_ispca

Compute a projection matrix of intersubject principal component analysis (isPCA).

Syntax:
[X_proj, explained_var] = p_ispca(X)

Input arguments:
 X centered data matrix with subjects in rows and features in columns

Output arguments:
 X_proj isPCA projection matrix consisting of eigenvectors
 explained_var ... vector of relative variability explained by eigenvectors in X_proj

Description:
Unlike with PCA, when a projection matrix is based on computation of eigenvectors of covariance
matrix of features, the principle of isPCA is to compute eigeinvectors out of intersubject
covariance matrix. Those are then transformed [1] into eigenvectors of covariance matrix of
features, sorted and assembled together, forming a projection matrix.
For further reading on isPCA please refer to [2].

Example:
[A_proj, expl_var] = p_ispca(Subjects);

References:
[1] O. Demirci, V.P. Clark, V.A. Magnotta, N.C. Andreasen, J. Lauriello, K.A. Kiehl, G.D. Pearlson,

and V.D. Calhoun: „A Review of Challenges in the Use of fMRI for Disease Classification /
Characterization and A Projection Pursuit Application from A Multi-Site fMRI Schizophrenia
Study.”, Brain Imaging and Behavior, Vol. 2, No. 3, 2008, pp. 207–26.

[2] E. Janousova, D. Schwarz, and T. Kasparek: „Combining Various Types of Classifiers and
Features Extracted from Magnetic Resonance Imaging Data in Schizophrenia Recognition.”,
Psychiatry Research: Neuroimaging, Vol. 232, No. 3, 2015, pp. 237–49.

p_preproc

Private function for preprocessing data.

Syntax:
[data_used_c, data_omit_c, used_g_ids, omit_g_ids] = p_preproc(data, omit_ids)
[data_used_c, data_omit_c, used_g_ids, omit_g_ids] = p_preproc(data, omit_ids,

group_ids)

Input arguments:
 X data matrix to be preprocessed with subjects in rows and features in

columns
 omit_ids vector of indices pointing to subjects (rows) to omit from the data matrix X
 group_ids vector of group identifiers corresponding to subjects (rows) in X

Output arguments:
 X_used_c centered data matrix with subjects retained for computation of mean

 X_omit_c centered data matrix with subjects specified in omit_ids
 used_g_ids group identifiers of subjects retained for computation of mean
 omit_g_ids group identifiers of subjects specified in omit_ids

Description:
The data are divided into two datasets -- the subjects to compute a mean from and the subjects
taken out of the computation. Both datasets are then centered with the mean. If present, likewise
is employed the division of the corresponding group identifiers.

Examples:
[X_train, X_test, c_ids_train] = p_preproc(X, tested_image, class_ids);
[X_train, X_skipped] = p_preproc(X, [tested_image paired_image]);

Appendix B: Automated classification tutorial

demo_class.m

This demo demonstrates a way to use FEATbox for leave-one-out cross-validated linear support vector

machine classification utilizing feature extraction algorithms implemented in the toolbox – namely

Mann-Whitney testing, isPCA, K-SVD and pattern-based morphometry (PBM).

First, the toolbox is initialized, example data are loaded and rearranged into a data matrix of subjects

in rows and features in columns. The code also shows how masking can be incorporated into data

preprocessing and how *.nii images can be visualized (also with masking). Subsequently, for each of

the feature extraction algorithms, parameters are set and the classification is employed. In the end,

classification performance is evaluated and the results are visually inspected and compared.

Furthermore, random projection reduction can be performed with the use of "random_projection"

function. Typically, the data matrix can be firstly reduced and then passed to "extract_*...*" or

"classify_*...*" functions to lower computational demands. However, as PBM creates difference

images within the "classify_pbm" function, random projection can not take place beforehand. Thus, it

can be set in form of a struct in the function call. Possible ways to employ random projection are also

demonstrated in the demo on K-SVD classification.

Suggestion: If you uncomment Mann-Whitney testing, the demo would take up to several minutes to

compute. Thus, set it off first and take a look at the code (or other demos) while it runs.

1. Initialization

toolbox_path = pwd; % set a path to the toolbox

cd(toolbox_path); % change the current working folder

load_prerequisites([toolbox_path,'\prerequisites'])

% % optionally, the prerequisites can be saved to the MATLAB search path permanently

% load_prerequisities([toolbox_path,'\prerequisites'], 1)

2. Data loading & Vizualization

data_path = [toolbox_path,'\example_data\'];

[class_ids,files] = xlsread([data_path,'\index_unsorted.xls'],'data','a2:b21'); % read the

indexing table

files = cell2mat(files);

% vizualization

toy_image = 'img24.nii';

display_nii([data_path,'\',toy_image]); % display an example image

% % optionally, a mask can be applied to the data

% load([data_path,'\mask.mat']);

% display_nii([data_path,'\',toy_image], mask); % display an example image after masking

3. Data matrix creation

[X,orig_n_subjects,orig_n_voxels,original_size] = create_data_matrix(data_path, files);

% % optionally, a mask can be applied to the data

% [X,orig_n_subjects,orig_n_voxels] = create_data_matrix(data_path, files, mask);

4. Feature extraction & Classification

% % Mann-Whitney testing ... uncomment to run (computationally demanding)

% p_threshold = 0.01; % threshold for level of significance

% pred_class_mw = classify_mw(X, class_ids, p_threshold); % vector of predicted classes for

Mann-Whitney

%

% [accur, sens, spec, prec] = performance_eval(class_ids, pred_class_mw);

% perf_mw = [accur, sens, spec, prec];

% isPCA

n_components = 18; % number of most discriminative components to retain

pred_class_ispca = classify_ispca(X, class_ids, n_components); % vector of predicted classes

for isPCA

[accur, sens, spec, prec] = performance_eval(class_ids, pred_class_ispca); % classification

performance

perf_ispca = [accur, sens, spec, prec];

% K-SVD without random projection

n_atoms = 19; % number of atoms

sparsity = 5; % sparsity constraint

RP = {}; % without random projection

pred_class_ksvd = classify_ksvd(X, class_ids, RP, n_atoms, sparsity); % vector of predicted

classes for K-SVD without random projection

[accur, sens, spec, prec] = performance_eval(class_ids, pred_class_ksvd); % classification

performance

perf_ksvd = [accur, sens, spec, prec];

% K-SVD with random projection 1

n_atoms = 17; % number of atoms

sparsity = 5; % sparsity constraint

RP.p = 1/100; % multiplier to reduce the length of descriptors with

RP.t = 'A'; % Achlioptas matrix

pred_class_ksvd1 = classify_ksvd(X, class_ids, RP, n_atoms, sparsity); % vector of predicted

classes for K-SVD with random projection 1

[accur, sens, spec, prec] = performance_eval(class_ids, pred_class_ksvd1); % classification

performance

perf_ksvd1 = [accur, sens, spec, prec];

% K-SVD with random projection 2

n_atoms = 17; % number of atoms

sparsity = 5; % sparsity constraint

X_rp = random_projection(X, 1/100, 'A'); % reduced data matrix

pred_class_ksvd2 = classify_ksvd(X_rp, class_ids, {}, n_atoms, sparsity); % vector of

predicted classes for K-SVD with random projection 2

[accur, sens, spec, prec] = performance_eval(class_ids, pred_class_ksvd2); % classification

performance

perf_ksvd2 = [accur, sens, spec, prec];

% PBM with random projection

n_atoms = 2; % number of atoms

sparsity = 5; % sparsity constraint

n_neighbours = 3; % number of nearest neighbours

RP.p = 1/100; % multiplier to reduce the length of descriptors with

RP.t = 'A'; % Achlioptas matrix

pred_class_pbm = classify_pbm(X, class_ids, RP, n_atoms, n_neighbours, sparsity); % vector

of predicted classes for PBM with random projection

[accur, sens, spec, prec] = performance_eval(class_ids, pred_class_pbm); % classification

performance

perf_pbm = [accur, sens, spec, prec];

5. Visualization of classification performance

C = [perf_ispca;perf_ksvd;perf_ksvd1;perf_ksvd2;perf_pbm]; % classification performances in

rows

c_names = {'isPCA','K-SVD','K-SVD1','K-SVD2','PBM'}; % names of classifiers

show_m = [1, 1, 1, 0]; % show accuracy, sensitivity and specificity / disregard precision

my_title = 'Comparison of classification performance'

performance_disp(C, show_m, c_names, my_title); % display multi-bar plot of classification

performance

Appendix C: Manual classification tutorial

demo_class_manual.m

This demo demonstrates a way to use FEATbox to create your own classification scheme utilizing one

of the implemented algorithms, K-SVD.

First, the toolbox is initialized, example data are loaded and rearranged into a data matrix of subjects

in rows and features in columns. Second, the data matrix is reduced with Achlioptas random projection

creating another data matrix. Subsequently, "extract_ksvd" function is utilized to project the data onto

coordinates gained with K-SVD (along with a visual inspection). The reduction of the features space

into 2-D facilitates the following k-nearest neighbours classification. Besides, a simplified leave-pair-

out cross-validation loop is implemented as follows. In every iteration, a randomly selected pair of

subjects from different groups are taken out of a training dataset. The paired image is simply thrown

away whereas the tested image is classified. Each of the images is chosen to be the tested one only

once. In the end, classification performance is evaluated separately for the full and the reduced data

matrix and the results are graphically depicted.

Classification with other algorithms (Mann-Whitney, isPCA, PBM) is analogical – the respective

functions are "extract-mw", "extract-ispca", "extract-pbm".

1. Initialization

toolbox_path = pwd; % set the location of FEATbox

cd(toolbox_path); % change the current working folder

load_prerequisites([toolbox_path,'\prerequisites']) % check whether all pre-required

functions are in MATLAB search path

2. Data loading

data_path = [toolbox_path,'\example_data\']; % set the path to data

[class_ids,files] = xlsread([data_path,'\index_unsorted.xls'],'data','a2:b21'); % read the

indexing table

files = cell2mat(files);

3. Data matrix creation

[X, orig_n_subjects, orig_n_voxels,original_size] = create_data_matrix(data_path, files);

% create the data matrix

4. Random projection initialization

p = 1/100; % set a multiplier to reduce the length of descriptors with

X_rp = random_projection(X, p, 'A'); % data matrix reduced using (Achlioptas) random

projection

5. Use feature extraction to create your own classification scheme
Simplified leave-pair-out classification with k-nearest neighbours classifier based on features extracted

with KSVD

n_atoms = 2; % number of atoms to be learned

% visual estimation whether 2 atoms span a feature space in which the groups are separable

X_proj = extract_ksvd(X, [], n_atoms); % data projected onto new feature space

figure;

gscatter(X_proj(:,1),X_proj(:,2),class_ids); % show projected data

title('Data projected onto new feature space');

% sorting data for leave-pair-out

[class_ids_s,idx] = sort(class_ids); % sorted group identifiers

X_s = X(idx,:); % sorted data matrix

Xrp_s = X_rp(idx,:); % sorted reduced data matrix

predictions_X = zeros(orig_n_subjects,1)-1; % vector of predicted classes (initialized to -1)

predictions_Xrp = zeros(orig_n_subjects,1)-1; % vector of predicted classes for reduced data

(initialized to -1)

% simplified leave-pair-out classification

for tested_image = 1:orig_n_subjects

 % randomly choose an image (belonging to the other group) to be taken out of the

 % training data set

 if tested_image < (orig_n_subjects/2+1) % here, the data must be sorted

 paired_image = randi([orig_n_subjects/2+1 orig_n_subjects]);

 else

 paired_image = randi([1 orig_n_subjects/2]);

 end

 ci_ksvd = class_ids_s(setdiff(1:end,[tested_image paired_image])); % class identifiers of

training data

 display(sprintf('sLPO * (KSVD + kNN): Computing %d out of %d

...',tested_image,orig_n_subjects));

 % classification

 [X_ksvd , X_tested] = extract_ksvd(X_s, [tested_image paired_image], n_atoms); %

training and tested data in new coordinates

 recognized_index = knnsearch(X_ksvd,X_tested); % k-NN classification

 predictions_X(tested_image) = ci_ksvd(recognized_index(1)); % record the predicted class

 % classification based on reduced data matrix

 [Xrp_ksvd , Xrp_tested] = extract_ksvd(Xrp_s, [tested_image paired_image], n_atoms); %

training and tested data in new coordinates

 recognized_index = knnsearch(Xrp_ksvd,Xrp_tested); % k-NN classification

 predictions_Xrp(tested_image) = ci_ksvd(recognized_index(1)); % record the predicted class

end

sLPO * (KSVD + kNN): Computing 1 out of 20 ...

sLPO * (KSVD + kNN): Computing 2 out of 20 ...

sLPO * (KSVD + kNN): Computing 3 out of 20 ...

sLPO * (KSVD + kNN): Computing 4 out of 20 ...

sLPO * (KSVD + kNN): Computing 5 out of 20 ...

sLPO * (KSVD + kNN): Computing 6 out of 20 ...

sLPO * (KSVD + kNN): Computing 7 out of 20 ...

sLPO * (KSVD + kNN): Computing 8 out of 20 ...

sLPO * (KSVD + kNN): Computing 9 out of 20 ...

sLPO * (KSVD + kNN): Computing 10 out of 20 ...

sLPO * (KSVD + kNN): Computing 11 out of 20 ...

sLPO * (KSVD + kNN): Computing 12 out of 20 ...

sLPO * (KSVD + kNN): Computing 13 out of 20 ...

sLPO * (KSVD + kNN): Computing 14 out of 20 ...

sLPO * (KSVD + kNN): Computing 15 out of 20 ...

sLPO * (KSVD + kNN): Computing 16 out of 20 ...

sLPO * (KSVD + kNN): Computing 17 out of 20 ...

sLPO * (KSVD + kNN): Computing 18 out of 20 ...

sLPO * (KSVD + kNN): Computing 19 out of 20 ...

sLPO * (KSVD + kNN): Computing 20 out of 20 ...

6. Performance Evaluation

[accur, sens, spec, prec, cm] = performance_eval(class_ids_s, predictions_X, 1); % compute

classification performance

[accur_rp, sens_rp, spec_rp, prec_rp, cm_rp] = performance_eval(class_ids_s,

predictions_Xrp, 1); % compute classification performance

% do some evaluation ...

ClasPer = [[accur,sens,spec,prec];[accur_rp,sens_rp,spec_rp,prec_rp]];

performance_disp(ClasPer, [1 1 1 1], {'data without RP (full)','data with RP (reduced)'},

'Random projection (RP) results comparison');

display('-----');

display(sprintf('Classification accuracy with full data matrix: %.0f%s.', accur*100,'%'));

display(sprintf('Classification accuracy with data matrix reduced %d times: %.0f%s.', 1/p,

accur_rp*100,'%'));

display('-----');

Classification accuracy with full data matrix: 85%.

Classification accuracy with data matrix reduced 100 times: 80%.

Appendix D: Feature extraction tutorial

demo_extraction.m

This demo demonstrates a way to use FEATbox to extract features using one of the implemented

algorithms - Mann-Whithey testing.

First, the toolbox is initialized, example data are loaded and rearranged into a data matrix of subjects

in rows and features in columns. Subsequently, "extract_mw" function is utilized to select features

significantly distinguishing between two groups in the data. The selection takes place in a leave-one-

out cross-validation loop. The selected pixels are then visualized.

Feature extraction with other algorithms (isPCA, K-SVD, PBM) is analogical -- the respective functions

are "extract-ispca", "extract-ksvd", "extract-pbm".

Suggestion: This demo takes up to several minutes to compute. Thus, set it off first and take a look at

the code (or other demos) while it runs.

1. Initialization

toolbox_path = pwd; % set the location of FEATbox

cd(toolbox_path); % change the current working folder

load_prerequisites([toolbox_path,'\prerequisites']) % check whether all pre-required

functions are in MATLAB search path

2. Data loading

data_path = [toolbox_path,'\example_data\']; % set the path to data

[class_ids,files] = xlsread([data_path,'\index_unsorted.xls'],'data','a2:b21'); % read the

indexing table

files = cell2mat(files);

3. Data matrix creation

[X, orig_n_subjects, orig_n_voxels, original_size] = create_data_matrix(data_path, files);

% create the data matrix

4. Feature extraction & Visualization

threshold = 0.2; % set a threshold for level of significance

selected_features = zeros(1,orig_n_voxels); % initialize a vector of selected features

% leave-one-out cross-validation

for tested_image = 1:orig_n_subjects

 display(sprintf('MW extraction: Computing %d out of %d

...',tested_image,orig_n_subjects));

 [~, ~, selected_ids] = extract_mw(X, tested_image, class_ids, threshold); % select

features with p-values lower than the threshold

 selected_features = selected_features + selected_ids; % cumulate feature across the cross-

validation loop

 % the code can be extended with a classification based on selected features

 % ..

 % ... (e.g. see "demo_class_manual.m") ...

 % ..

end

% visualization of features selected by MW testing cumulated across leave-one-out cross-

validation scheme

A = reshape(selected_features,original_size); % rearrange features into a matrix

imagesc(A); % show the features (scale: dark blue = never selected, yellow = selected in each

iteration)

title('MW: Set of selected voxels (cumulated across LOO)');

MW extraction: Computing 1 out of 20 ...

MW extraction: Computing 2 out of 20 ...

MW extraction: Computing 3 out of 20 ...

MW extraction: Computing 4 out of 20 ...

MW extraction: Computing 5 out of 20 ...

MW extraction: Computing 6 out of 20 ...

. . .

MW extraction: Computing 17 out of 20 ...

MW extraction: Computing 18 out of 20 ...

MW extraction: Computing 19 out of 20 ...

MW extraction: Computing 20 out of 20 ...

