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FEATbox (Feature Extraction & clAssification Toolbox) is an outcome of attempts to compare feature 

extraction and selection methods for schizophrenia classification based on magnetic resonance images 

(MRI) of brains. Thus, the primary focus of the toolbox are various feature extraction techniques, 

extracting features from 3-D images given in NIfTI format. Namely, Mann-Whitney testing is 

implemented as a representative of univariate approaches with contrast to multivariate methods such 

as intersubject PCA (isPCA), the K-SVD algorithm, and pattern-based morphometry (PBM). The 

extracted features can be either examined more thoroughly or passed to a subsequent leave-one-out 

cross-validated (LOOCV) linear support vector machine (SVM) classification. Also, several classification 

measures are implemented in the toolbox for assessing and comparing classification performance of 

different classification schemes.  

Description 

Despite its original purpose, the toolbox design enables to use data from various fields and problem 

domains. The only rule is that the data must be arranged in a matrix with subjects in rows and features 

in columns. The toolbox provides function to load NIfTI images (either 2-D or 3-D) contained in a folder 

and put them in a vectorized form in such a matrix. Should the format of data be different, the data 

matrix must be created manually. As real-world data matrices are often large, the toolbox supplies a 

dimensionality reduction technique, random projection, in order to reduce computation times. 

After data matrix is created, the toolbox can be used either as a feature extraction tool or as a 

classification tool. Regarding the former, 4 feature extraction functions (one for each of the 

aforementioned methods) are ready for those who aim to inspect the extracted features more 

thoroughly or build their own classification scheme. 

Speaking about the latter, FEATbox provides 4 classification functions varying in their feature 

extraction step (again one for each of the aforementioned methods). The output of the functions are 

classes predicted with SVM classifier. Both feature extraction and classification are nested in a LOOCV 

loop. Subsequently, the predicted classes can be compared with the true ones in order to receive 

statistical measures such as classification accuracy, etc. The toolbox also provides a function to 

visualize the results for one or more classifiers in a multi-bar graph. 

Prerequisites 

Due to toolbox complexity, the toolbox requires several prerequisites to function properly: 

1. NIfTI toolbox  ....................................  for manipulation with data in NIfTI format, 

2. ksvdbox by Ron Rubinstein ..............  to run the K-SVD algorithm, 

3. ompbox by Ron Rubinstein  .............  as a pursuit algorithm for ksvdbox. 



Their current versions are attached to FEATbox (in the „prerequisites” folder) or they can be 

downloaded from their respective websites. 

When using random projection, make sure MATLAB has assigned enough heap memory as generation 

of large random projection matrices can be very demanding. 

Tutorials 

The toolbox comes with example data and 3 tutorial demos. They demonstrate how to: 

1. use toolbox build-in functions for simple and automated classification (see demo_class.m in 

Appendix B: Automated classification tutorial), 

2. use toolbox to create own classification scheme (see demo_class_manual.m in Appendix C: 

Manual classification tutorial) 

3. use toolbox to extract and assess features from data (see demo_extraction.m in Appendix D: 

Feature extraction tutorial). 

Notes to all tutorials: 

1. In order to run the demo, you must either change „toolbox_path” to location of the demo on 

your local disk or set your current working folder accordingly. 

2. All FEATbox functions are accentuated with white spaces between brackets and arguments in 

the code (e.g. [ output ] = func( input1, input2 ) instead of [output]=func(input1,input2)) so 

that they can be recognized easily. In order to learn more about the function, please refer to 

„help *function_name*” or Appendix A: Complete list of FEATbox functions attached below. 

3. The example data (with a mask included) are artificial. All demos merely demonstrate how to 

operate real datasets with the toolbox for feature extraction and classification purposes. 

Short list of functions 

FEATbox functions are divided into 4 main categories: 

1. „ classify-* ” functions for automated classification, 

2. „ extract-* ” functions for feature extraction, 

3. other functions serving for data processing and performance evaluation, 

4. „ p_* ” private functions mainly for inner purposes of the toolbox (p_ prefix = private). 

Functions implemented in the toolbox are shortly listed in the following table (Table 1). Detailed 

description about each of the functions can be found in Appendix A: Complete list of FEATbox 

functions. Function names in the table serve as hyperlinks to their respective detailed descriptions. 

Table 1: A short list of FEATbox functions (click on *function_name* to see detailed description). 

Function name Brief description Input Output 

 
classify_ispca 

 
Perform a leave-one-out cross-validated 
linear support vector machine 
classification based on the most 
discriminative features extracted with 
intersubject principal component analysis. 
 

 
X 

group_ids 
c 
 

 
class_predicts 

 



 
classify_ksvd 

 
Perform a leave-one-out cross-validated 
linear support vector machine 
classification based on the features 
extracted with the K-SVD algorithm  

 
X 

group_ids 
rp_struct 

a 
s 
 

 
class_predicts 

 
classify_mw 
 

 
Perform a leave-one-out cross-validated 
linear support vector machine 
classification based on features selected 
with Mann-Whitney testing. 
 

 
X 

group_ids 
t 

 
class_predicts 

 
classify_pbm 

 
Perform a leave-one-out cross-validated 
linear support vector machine 
classification based on the most 
discriminative features extracted with 
pattern-based morphometry. 

 
X 

group_ids 
rp_struct 

a 
k 
s 
 

 
class_predicts 

 
extract_ispca 

 
Transform data into a new feature space 
spanned by the most discriminative (in 
terms of ability of distinguishing between 
the groups in data) isPCA components. 
 

 
X 

skip_ids 
group_ids 

c 

 
X_ispca 

X_skipped 
proj_mat_discr 
expl_var_discr 

 
extract_ksvd 

 
Transform data into a new feature space 
spanned by atoms of a dictionary learned 
by the K-SVD algorithm. 
 

 
X 

skip_ids 
a 
s 
 

 
X_ksvd 

X_skipped 
dict 

sparse_coeff 

 
extract_mw 

 
Reduce feature space by selecting the 
most discriminative (in terms of ability of 
distinguishing between the groups in data) 
features on the basis of Mann-Whitney 
testing. 
 

 
X 

skip_ids 
group_ids 

t 

 
X_mw 

X_skipped 
selected_ids 

p_MW 

 
extract_pbm 

 
Transform data into a new feature space 
spanned by atoms of a dictionary learned 
with pattern-based morphometry. 

 
X 

skip_ids 
group_ids 

a 
k 
s 
 
 
 

 

 
X_pbm 

X_skipped 
dict 

sparse_coeff 



 
create_data_matrix 

 
Create data matrix from NIfTI images 
(with/without masking) in a folder. 

 
dirname 

files 
mask 

 

 
X 

n_files 
n_voxels 

original_dim 

 
display_nii 

 
Load and display masked/unmasked NIfTI 
image. 

 
filename 

mask 
 

 

 
load_prerequisites 

 
Check whether all FEATbox prerequisites 
are in MATLAB search path and, if not, 
include them. 
 

 
dirname 

remember 

 

 
performance_disp 

 
Display classification measures in a 
grouped multi-bar plot for each 
classification. 

 
CP 

measures 
names 
f_title 

f_legend 
 

 

 
performance_eval 

 
Evaluate classification performance. 

 
true_class 
predictions 

positive_label 
 

 
accur 
sens 
spec 

precis 
cm 

 

 
random_projection 

 
Reduce matrix dimension with Gaussian or 
Achlioptas random projection. 

 
X 

k_desired 
type 

 

 
X_red 

rp_matrix 
k 

 
p_gen_diff_im 

 
Generate a matrix of a difference images. 

 
group1 
group2 

k 
 

 
diff_images 

 
p_ispca 

 
Compute a projection matrix of 
intersubject principal component analysis. 
 

 
X 

 
X_proj 

explained_var 

 
p_preproc 

 
Private function for preprocessing 
(dividing and centering) data. 

 
X 

omit_ids 
group_ids 

 
X_used_c 
X_omit_c 

used_g_ids 
omit_g_ids 

 

 

  



Appendix A: Complete list of FEATbox functions 

classify_ispca 

Perform a leave-one-out cross-validated linear support vector machine classification based on the 
most discriminative features extracted with intersubject principal component analysis (isPCA). 

Syntax: 
[class_predicts] = classify_ispca(X, group_ids, c) 

Input arguments: 
 X  ........................  data matrix with subjects in rows and features in columns 
 group_ids  ..........  vector of group identifiers corresponding to subjects (rows) in X 
 c  ........................  number of the most discriminative components to be used for classification; 

the maximum possible value is N-2, where N is the number of subjects 
(rows) in X 

Output arguments: 
 class_predicts  ................  vector of classes predicted by SVM classifier to each subject 

Description: 
A linear support vector machine (SVM) classifier is used to perform a leave-one-out cross-
validated (CV) classification of subjects given in „X“. In each iteration, the data matrix is divided 
into training and testing datasets. Next, intersubject PCA [1] is utilized to derive a projection 
matrix from the training data in order to reduce the dimensionality of the problem. To enhance 
the classification, p-values resulting from Mann-Whitney testing are exploited to select only 
„c“ components with the best discriminative power of distinguishing between the groups. Those 
components span a feature space where the SVM classification takes place. Note that such a CV 
scheme correctly involves feature extraction in its every step. 

Example: 
predicted_classes = classify_ispca( Subjects, subject_group_ids, 16 ); 

Reference: 
[1] E. Janousova, D. Schwarz, and T. Kasparek: „Combining Various Types of Classifiers and 

Features Extracted from Magnetic Resonance Imaging Data in Schizophrenia Recognition.”, 
Psychiatry Research: Neuroimaging, Vol. 232, No. 3, 2015, pp. 237–49. 

  



classify_ksvd 

Perform a leave-one-out cross-validated linear support vector machine classification based on the 
features extracted with the K-SVD algorithm. 

Syntax: 
[class_predicts] = classify_ksvd(X, group_ids, rp_struct, a, s) 

Input arguments: 
 X  ................................... data matrix with subjects in rows and features in columns 
 rp_struct  ...................... structure array with random projection settings: 
 - rp_struct.p  ......... fraction of columns to retain / desired number of columns in reduced 

data matrix 
 - rp_struct.t  .......... type of random projection matrix; 'A' (default) for Achlioptas, 'G' for 

Gaussian  
(for more information use „help random_projection“) 

 a  ................................... number of atoms in dictionary / dimension of the new feature space; 
the maximum possible value is N-1, where N is the number of 
subjects (rows) in X 

 s  .................................... sparsity constraint for K-SVD coefficient matrix; default = 5 

Output arguments: 
 class_predicts  .............. vector of classes predicted by SVM classifier to each subject 

Description: 
A linear support vector machine (SVM) classifier is used to perform a leave-one-out cross-
validated (CV) classification of subjects given in „X“. In each iteration, the data matrix is divided 
into training and testing datasets. Next, the training dataset is utilized to learn a data-driven 
dictionary with the K-SVD algorithm [1]. Atoms in the dictionary span a new feature space where 
the SVM classification takes place. Note that such a CV scheme correctly involves feature 
extraction in its every step. 

Examples: 
RP.p = 1/100; % multiplier to reduce the length of descriptors with 

RP.t = 'A'; % Achlioptas matrix 
predicted_classes = classify_ksvd( Subjects, subject_group_ids, RP, 6, 3 ); 
predicted_classes = classify_ksvd( Subjects, subject_group_ids, {}, 9 ); 

Reference: 
[1] M. Aharon, M. Elad, and A. Bruckstein: „K-SVD: An Algorithm for Designing Overcomplete 

Dictionaries for Sparse Representation.”, IEEE Transactions on Signal Processing, Vol. 54, No. 
11, 2006, pp. 4311–22. 

Note: 
Requires ksvdbox and ompbox by Ron Rubinstein. 

  



classify_mw 

Perform a leave-one-out cross-validated linear support vector machine classification based on features 
selected with Mann-Whitney testing. 

Syntax: 
[class_predicts] = classify_mw(X, group_ids, t) 

Input arguments: 
 X  ........................  data matrix with subjects in rows and features in columns 
 group_ids  ..........  vector of group identifiers corresponding to subjects (rows) in X 
 t  .........................  threshold for Mann-Whitney p-values; features with lower p-values than t 

are selected for the classification 

Output arguments: 
 class_predicts  ...  vector of classes predicted by SVM classifier to each subject 

Description: 
A linear support vector machine (SVM) classifier is used to perform a leave-one-out cross-
validated (CV) classification of subjects given in „X“. In each iteration, the data matrix is divided 
into training and testing datasets. Next, the training dataset is subject to Mann-Whitney testing 
for each feature. The p-values resulting from the testing are exploited to select only the features 
with a higher discriminative power than given by the threshold „t“. A subsequent SVM 
classification takes place in the reduced feature space. Note that such a CV scheme correctly 
involves feature selection in its every step. 

Example: 
predicted_classes = classify_mw(Subjects, subject_group_ids, 0.01); 

  



classify_pbm 

Perform a leave-one-out cross-validated linear support vector machine classification based on the 
features extracted with pattern-based morphometry. 

Syntax: 
[class_predicts] = classify_pbm(X, group_ids, rp_struct, a) 
[class_predicts] = classify_pbm(X, group_ids, rp_struct, a, k) 
[class_predicts] = classify_pbm(X, group_ids, rp_struct, a, k, s) 

Input arguments: 
 X  ................................... data matrix with subjects in rows and features in columns 
 group_ids  ..................... vector of group identifiers corresponding to subjects (rows) in X 
 rp_struct  ...................... structure array with random projection settings:  
 - rp_struct.p  ......... fraction of columns to retain / desired number of columns in reduced 

data matrix 
 - rp_struct.t  .......... type of random projection matrix; 'A' (default) for Achlioptas, 'G' for 

Gaussian  
(for more information use „help random_projection“) 

 a  ................................... number of atoms in dictionary / dimension of the new feature space; 
the maximum possible value is (N-1)*k,where N is the number of 
subjects (rows) in X 

 k  ................................... number of nearest neighbours to use when generating difference 
images; default = 3  
(for more information use „help p_gen_diff_im“) 

 s  .................................... sparsity constraint for K-SVD coefficient matrix; default = 5 

Output arguments: 
 class_predicts  .............. vector of classes predicted by SVM classifier to each subject 

Description: 
A linear support vector machine (SVM) classifier is used to perform a leave-one-out cross-
validated (CV) classification of subjects given in „X“. In each iteration, the data matrix is divided 
into training and testing datasets. Next, a difference images matrix is generated (see „help 
p_gen_diff_im“) from dataset of the training dataset. The matrix is utilized to learn a data-driven 
dictionary with the K-SVD algorithm [1]. Atoms in the dictionary span a new feature space where 
the SVM classification takes place. Note that such a CV scheme correctly involves feature 
extraction in its every step. 
For further reading on pattern-based morphometry please refer to [2]. 

Examples: 
RP.p = 1/100; % multiplier to reduce the length of descriptors with 

RP.t = 'A'; % Achlioptas matrix 
predicted_classes = classify_pbm(Subjects, subject_group_ids, RP, 49); 
predicted_classes = classify_ksvd(Subjects, subject_group_ids, {}, 3, 5, 2); 

References: 
[1] M. Aharon, M. Elad, and A. Bruckstein: „K-SVD: An Algorithm for Designing Overcomplete 

Dictionaries for Sparse Representation.“, IEEE Transactions on Signal Processing, Vol. 54, No. 
11, 2006, pp. 4311–22. 

[2] B. Gaonkar, K. Pohl, and C. Davatzikos: „Pattern Based Morphometry.“ Medical Image 
Computing and Computer-Assisted Intervention, Vol. 14, No. Pt 2, 2011, pp. 459–66. 



extract_ispca 

Transform data into a new feature space spanned by the most dicriminative (in terms of ability of 
distinguishing between the groups in data) isPCA components. 

Syntax: 
[X_ispca, X_skipped, proj_mat_discr, expl_var_discr] = extract_ispca(X, 

skip_ids, group_ids, c) 

Input arguments: 
 X  ................................... data matrix with subjects in rows and features in columns 
 skip_ids  ........................ vector of subject indices to omit from feature extraction (i.e. rows in 

X specified by the argument will not be used to derive isPCA 
projection matrix); to use all the subjects, use an empty vector 

 group_ids  ..................... vector of group identifiers corresponding to subjects (rows) in X 
 c  ................................... number of the most discriminative components / dimension of the 

new feature space; the maximum possible value is N-M-1, where N 
is the number of subjects (rows) in X and M is the number of indices 
specified in skip_ids 

Output arguments: 
 X_ispca  ......................... data matrix of subjects not specified in skip_ids (i.e. used in feature 

extraction) projected onto c most discriminative isPCA components 
 X_skipped ..................... data matrix of subjects specified in skip_ids (i.e. omitted from feature 

extraction) projected onto c most discriminative isPCA components 
 proj_mat_discr  ............. projection matrix consisting of c most discriminative isPCA 

components 
 expl_var_discr  .............. vector of relative amount of variability explained by each of c most 

discriminative isPCA components 

Description: 
First, subjects specified in „skip_ids“ are taken out of „X“, thus creating a data matrix of retained 
subjects. Next, intersubject PCA [1] is utilized to derive a projection matrix from the retained data. 
Subsequently, p-values resulting from Mann-Whitney testing are exploited to select only 
„c“ components with the best discriminative power of distinguishing between the groups in 
retained data. Last, both the retained and skipped data are projected onto a feature space 
spanned by the components. 

Examples: 
X_projected = extract_ispca(X, [], group_ids, 19); % use all subjects 
[X_re, X_om, PM, ex_var] = extract_ispca(X, 7, g_ids, 6); 
[Subj_proj, T_and_P_proj] = extract_ispca(Subjects,[tested_image paired_image], 

subject_group_ids, 14); 

Reference: 
[1] E. Janousova, D. Schwarz, and T. Kasparek: „Combining Various Types of Classifiers and 

Features Extracted from Magnetic Resonance Imaging Data in Schizophrenia Recognition.”, 
Psychiatry Research: Neuroimaging, Vol. 232, No. 3, 2015, pp. 237–49. 

  



extract_ksvd 

Transform data into a new feature space spanned by atoms of a dictionary learned by the K-SVD 
algorithm. 

Syntax: 
[X_ksvd, X_skipped, dict, sparse_coeff] = extract_ksvd(X, skip_ids, a) 
[X_ksvd, X_skipped, dict, sparse_coeff] = extract_ksvd(X, skip_ids, a, s) 

Input arguments: 
 X  ........................  data matrix with subjects in rows and features in columns 
 skip_ids  .............  vector of subject indices to omit from feature extraction (i.e. rows in X 

specified by the argument will not be used to derive K-SVD dictionary); to 
use all the subjects, use an empty vector 

 a  ........................  number of atoms in dictionary / dimension of the new feature space; the 
maximum possible value is N-M, where N is the number of subjects (rows) 
in X and M is the number of indices specified in skip_ids 

 s  .........................  sparsity constraint for K-SVD coefficient matrix; default = 5 

Output arguments: 
 X_ksvd  ...............  data matrix of subjects not specified in skip_ids (i.e. used in feature 

extraction) projected onto K-SVD atoms 
 X_skipped ..........  data matrix of subjects specified in skip_ids (i.e. omitted from feature 

extraction) projected onto K-SVD atoms 
 dict  ....................  K-SVD dictionary (can be considered as a projection matrix) 
 sparse_coeff  .....  sparse coefficient K-SVD matrix 

Description: 
First, subjects specified in „skip_ids“ are taken out of „X“, thus creating a data matrix of retained 
subjects. Next, the matrix is utilized to learn a data-driven dictionary with the K-SVD algorithm [1]. 
Last, both the retained and skipped data are projected onto a feature space spanned by atoms in 
the dictionary. 

Examples: 
X_pr = extract_ksvd(X, 6, 19); 
[X_projected, ~, D, C] = extract_ksvd(X, [], 17); % use all subjects 
[Subj_proj, T_and_P_proj] = extract_ksvd(Subjects, [tested_image paired_image], 6, 

3); 

Reference: 
[1] M. Aharon, M. Elad, and A. Bruckstein: „K-SVD: An Algorithm for Designing Overcomplete 

Dictionaries for Sparse Representation.“, IEEE Transactions on Signal Processing, Vol. 54, No. 
11, 2006, pp. 4311–22. 

Note: 
Requires ksvdbox and ompbox by Ron Rubinstein. 

  



extract_mw 

Reduce feature space by selecting the most dicriminative (in terms of ability of distinguishing between 
the groups in data) features on the basis of Mann-Whitney testing. 

Syntax: 
[X_mw, X_skipped, selected_ids, p_MW] = extract_mw(X, skip_ids, group_ids) 
[X_mw, X_skipped, selected_ids, p_MW] = extract_mw(X, skip_ids, group_ids, t) 

Input arguments: 
 X  .............................  data matrix with subjects in rows and features in columns 
 skip_ids  ..................  vector of subject indices to omit from featureextraction (i.e. rows in X 

specified by theargument will not be subject to Mann-Whitney testing); 
to use all the subjects, use an empty vector 

 group_ids  ...............  vector of group identifiers corresponding to subjects (rows) in X 
 t  ..............................  threshold for Mann-Whitney p-values; features with lower p-values than 

t are selected to compose the reduced feature space, the rest are 
disregarded; default = 0.05 

Output arguments: 
 X_mw  .....................  data matrix of subjects not specified in skip_ids (i.e. used in Mann-

Whitney testing) in reduced feature space 
 X_skipped ...............  data matrix of subjects specified in skip_ids (i.e. omitted from Mann-

Whitney testing) in reduced feature space 
 selected_ids  ...........  vector of logical values showing whether a feature composes reduced 

feature space (i.e. was selected) or not 
 p_MW  ....................  vector of p-values resulting from Mann-Whitney testing 

Description: 
First, subjects specified in „skip_ids“ are taken out of „X“, thus creating a data matrix of retained 
subjects. Next, the retained data are subject to Mann-Whitney testing for each feature. The 
resulting p-values are exploited to select only the features with a higher discriminative power than 
given by the threshold „t“. Subsequently, the features which were not selected in the testing are 
disregarded from the matrices of both retained and skipped subjects, reducing their 
dimensionality. 

Examples: 
X_red = extract_mw(X, [], group_ids); % use all subjects 
[~, ~, selected_features, p_values] = extract_mw(X, 7, g_ids, 0.01); 
[Subj_red, T_and_P_red] = extract_mw(Subjects, [tested_image paired_image], 

subject_group_ids, 0.01); 

  



extract_pbm 

Transform data into a new feature space spanned by atoms of a dictionary learned with pattern-based 
morphometry. 

Syntax: 
[X_pbm, X_skipped, dict, sparse_coeff] = extract_pbm(X, skip_ids, group_ids, a) 
[X_pbm, X_skipped, dict, sparse_coeff] = extract_pbm(X, skip_ids, group_ids, a, k) 
[X_pbm, X_skipped, dict, sparse_coeff] = extract_pbm(X, skip_ids, group_ids, a, k, s) 

Input arguments: 
 X  .............................  data matrix with subjects in rows and features in columns 
 skip_ids  ..................  vector of subject indices to omit from feature extraction (i.e. rows in X 

specified by the argument will not be used to derive PBM dictionary); to 
use all the subjects, use an empty vector 

 group_ids  ............... vector of group identifiers corresponding to subjects (rows) in X 
 a  .............................  number of atoms in dictionary / dimension of the new feature space; the 

maximum possible value is (N-M)*k, where N is the number of subjects 
(rows) in X and M is the number of indices specified in skip_ids 

 k  .............................  number of nearest neighbours to use when generating difference 
images; default = 3 (for more information use „help p_gen_diff_im“) 

 s  ..............................  sparsity constraint for K-SVD coefficient matrix; default = 5 

Output arguments: 
 X_pbm  ....................  data matrix of subjects not specified in skip_ids (i.e. used in feature 

extraction) projected onto PBM atoms 
 X_skipped ...............  data matrix of subjects specified in skip_ids (i.e. omitted from feature 

extraction) projected onto PBM atoms 
 dict  .........................  PBM dictionary (can be considered as a projection matrix) 
 sparse_coeff  ..........  sparse coefficient PBM matrix 

Description: 
First, subjects specified in „skip_ids“ are taken out of „X“, thus creating a data matrix of retained 
subjects. Next, a difference images matrix is generated (see „help p_gen_diff_im“) from dataset 
of retained subjects. The matrix is utilized to learn a data-driven dictionary with the K-SVD 
algorithm [1]. Last, both the retained and skipped data are projected onto a feature space 
spanned by atoms in the dictionary. 
For further reading on pattern-based morphometry please refer to [2]. 

Examples: 
X_pr = extract_pbm(X, 6, group_ids, 57); 
[X_projected , ~, D, C ] = extract_pbm(X, [], g_ids, 6, 5); % use all subjects 
[Subj_proj, T_and_P_proj] = extract_pbm(Subjects, [tested_image paired_image], 

46, 7, 5); 

References: 
[1] M. Aharon, M. Elad, and A. Bruckstein: „K-SVD: An Algorithm for Designing Overcomplete 

Dictionaries for Sparse Representation.“, IEEE Transactions on Signal Processing, Vol. 54, No. 
11, 2006, pp. 4311–22. 

[2] B. Gaonkar, K. Pohl, and C. Davatzikos: „Pattern Based Morphometry.“ Medical Image 
Computing and Computer-Assisted Intervention, Vol. 14, No. Pt 2, 2011, pp. 459–66. 

  



create_data_matrix 

Create data matrix from NIfTI images (with/without masking) in a folder. 

Syntax: 
[X, n_files, n_voxels, original_dim] = create_data_matrix(dirname, files) 
[X, n_files, n_voxels, original_dim] = create_data_matrix(dirname, files, mask) 

Input arguments: 
 dirname  .............  name of a folder containing the images 
 files  ....................  vector of file names of images in NIfTI format; images must be of the same 

dimensions 
 mask  ..................  mask to be applied to the images; dimensions of the mask and images must 

agree 

Output arguments: 
 X  ........................  data matrix with vectorized images in rows 
 n_files  ...............  number of processed files (equals number of rows) 
 n_voxels  ............  number of pixels/voxels in one image 
 original_dim  ......  original dimensions of the images 

Description: 
NIfTI toolbox function „load_nii“ is utilized to load images contained in a folder and assemble 
them (vectorized) into a matrix as its rows. Moreover, a mask can be applied to the images. 

Examples: 
X = create_data_matrix('C:\Users\...\', [image1.nii image2.nii]); 
[X, n_subjects, n_voxels, X_dim] = create_data_matrix('C:\Users\...\', 

[image1.nii image2.nii], mask); 

Note: 
Requires NIfTI toolbox.  

  



display_nii 

Load and display masked/unmasked NIfTI image. 

Syntax: 
display_nii(filename) 
display_nii(filename, mask) 

Input arguments: 
 filename  ............  file name of an image in NIfTI format 
 mask  ..................  mask to be applied to the image; dimensions of the mask and image 

specified in filename must agree 

Description: 
NIfTI toolbox functions „load_nii“ and „view_nii“ are wrapped into a function in order to enable 
loading and displaying images with one call. Moreover, a mask can be applied to the images. 

Example: 
display_nii('C:\Users\...\image.nii', mask); 

Note: 
Requires NIfTI toolbox. 

  



load_prerequisites 

Check whether all FEATbox prerequisites are in MATLAB search path and, if not, include them. 

Syntax: 
load_prerequisites(dirname) 
load_prerequisites(dirname, remember) 

Input arguments: 
 dirname  .............  name of a folder containing FEATbox prerequisites 
 remember  .........  logical value whether to save FEATbox into MATLAB search path 

permanently or not 

Description: 
All external functions and toolboxes (namely NIfTI toolbox, ksvdbox, ompbox, multicols.m and 
normcols.m) are checked to be in MATLAB search path and, if not, they are added. When added 
permanently („remember“=1), the FEATbox itself is saved in MATLAB search path. Otherwise, 
FEATbox path must be a current working directory while working with the toolbox. 

Examples: 
load_prerequisites('C:\Users\...\'); 
load_prerequisites('C:\Users\...\', 1); 

Note: 
The „example_data“ directory is not added to the path as it is not necessary for FEATbox to 
function. 

  



performance_disp 

Display classification measures in a grouped multi-bar plot for each classification. 

Syntax: 
performance_disp(CP, measures) 
performance_disp(CP, measures, names) 
performance_disp(CP, measures, names, f_title) 

Input arguments: 
 CP  ......................  Classification performance matrix with classification measures (columns) for 

each classification (rows). 
 measures  ..........  vector of 4 logical values implying what statistical measures are in columns 

of CP: 
 - accuracy 
 - sensitivity 
 - specificity 
 - precision 
  e.g. [1, 0, 1, 1] means that CP matrix has 3 columns (accuracy, specificity and 

precision) 
 names  ...............  cell array consisting of names to display on x-axis of the figure corresponding 

to rows in CP 
 f_title  ................  title of the figure 
 f_legend  ............  location of legend in the figure; when set to 'hide', no legend is displayed; 

default = 'northeast' (for more information on possible location values use 
„help legend“ and scroll to „Location“) 

Description: 
Classification measures for each classifier given in „CP“ are displayed in a grouped multi-bar plot. 
Required arguments are the classification performance matrix and a vector of statistical measures 
to display. 

Example: 
CP = [0.8 0.7 0.9; 0.7 0.5 0.9]; % classification performance matrix 
measures = [1 1 1 0]; % show accuracy, sensitivity and specificity / disregard 

precision 

performance_disp(CP, measures, {'3-NN', '5-NN'}, 'My Results', 'northwest'); 
  



performance_eval 

Evaluate classification performance. 

Syntax: 
[accur, sens, spec, precis, cm] = performance_eval(true_class, predictions, 

positive_label) 

Input arguments: 
 true_class  ...............  vector with true class identifiers 
 predictions  .............  vector with predicted class identifiers 
 positive_label  .........  identifier of a group with a positive condition (e.g. patients) 

Output arguments: 
 accur  ......................  classification accuracy 
 sens  ........................  sensitivity 
 spec  ........................  specificity 
 precis ......................  precision 
 cm  ..........................  confusion matrix 

Description: 
Given true and predicted classes, a classification performance can be evaluated. 

Examples: 
[accur, sens, spec, precis, cm] = performance_eval(g_ids, pred_class, 1); 

class_accuracy = performance_eval(['A', 'A', 'B', 'A', 'B', 'B'], ['A', 'B', 'A', 'A', 'B', 'B'], 
'B'); 

 

  



random_projection 

Reduce matrix dimension with Gaussian/Achlioptas random projection. 

Syntax: 
[X_red, rp_matrix, k] = random_projection(X, k_desired)  
[X_red, rp_matrix, k] = random_projection(X, k_desired, type) 

Input arguments: 
 X  .............................  data matrix to be reduced [n x m] 
 k_desired  ...............  fraction of columns to retain / desired number of columns in reduced 

data matrix 
 type  ........................  type of random projection matrix; 'A' (default) for Achlioptas, 'G' for 

Gaussian 

Output arguments: 
 X_rp  ........................  reduced data matrix [n x k]  
 RP_matrix  ..............  random projection matrix [m x k]  
 k  .............................  number of columns in reduced data matrix 

Description: 
Random projection is a dimensionality reduction technique which enables reducing 
dimensionality of a data matrix X [n x m] by multiplying it with a random projection matrix 
RP [m x k] as follows: 

X_red = 1/sqrt(k)*X*RP, 
while preserving all pairwise Euclidean distances of X. Such a behaviour is possible when entries 
of RP matrix follow distribution with zero mean and constant variance (e.g. Gaussian). A simple 
distribution (‘very sparse’) complying with the rule was suggested by Achlioptas [1]. 
For further reading please refer to [2]. 

Examples: 
X_red = random_projection(X, 540);  
[Subjects_red, RP_matrix, red_n_voxels] = random_projection(Subjects, 1/1000, 

'G'); 

References: 
[1] D. Achlioptas. 2003. Database-friendly random projections: Johnson-Lindenstrauss with binary 

coins. Journal of Computer and System Sciences, 66(4), 671–687. 
[2] Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. Very sparse random projections. In 

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and 
data mining (KDD ‘06). ACM, New York, NY, USA, 287-296. 

Note: 
Make sure MATLAB has assigned enough heap memory as generation of large random projection 
matrices can be very demanding. 



p_gen_diff_im 

Generate a matrix of a difference images. 

Syntax: 
[diff_images] = p_gen_diff_im(group1, group2, k) 

Input arguments: 
 group1  ...............  matrix of subjects from the first group with vectorized subjects in rows and 

features in columns; the number of features between groups must be the 
same 

 group2  ...............  matrix of subjects from the first group with vectorized subjects in rows and 
features in columns; the number of features between groups must be the 
same 

 k  ........................  number of nearest neighbours to use when generating difference images 

Output arguments: 
 diff_images  .......  matrix of difference images in rows 

Description: 
For each image, using the Euclidean distance, a set of its k-nearest neighbors with a different 
affiliation is found. In other words, for an image a belonging to the group 1, its k most similar 
images belonging to the group 2 are searched for and vice-versa. Subsequently, the images are 
subtracted from their neighbors. In the end, the resulting difference images matrices together 
into a single matrix. Assuming the images are in rows, the new matrix will have k-times more rows 
than the original matrix. 
For further reading please refer to [1]. 

Example: 
X = p_gen_diff_im(Patients, Controls, 3); 

Reference: 
[1] B. Gaonkar, K. Pohl, and C. Davatzikos: „Pattern Based Morphometry.” Medical Image 

Computing and Computer-Assisted Intervention, Vol. 14, No. Pt 2, 2011, pp. 459–66. 
  



p_ispca 

Compute a projection matrix of intersubject principal component analysis (isPCA). 

Syntax: 
[X_proj, explained_var] = p_ispca(X) 

Input arguments: 
 X  ........................  centered data matrix with subjects in rows and features in columns 

Output arguments: 
 X_proj  ................  isPCA projection matrix consisting of eigenvectors 
 explained_var  ...  vector of relative variability explained by eigenvectors in X_proj 

Description: 
Unlike with PCA, when a projection matrix is based on computation of eigenvectors of covariance 
matrix of features, the principle of isPCA is to compute eigeinvectors out of intersubject 
covariance matrix. Those are then transformed [1] into eigenvectors of covariance matrix of 
features, sorted and assembled together, forming a projection matrix. 
For further reading on isPCA please refer to [2]. 

Example: 
[A_proj, expl_var] = p_ispca(Subjects); 

References: 
[1] O. Demirci, V.P. Clark, V.A. Magnotta, N.C. Andreasen, J. Lauriello, K.A. Kiehl, G.D. Pearlson, 

and V.D. Calhoun: „A Review of Challenges in the Use of fMRI for Disease Classification / 
Characterization and A Projection Pursuit Application from A Multi-Site fMRI Schizophrenia 
Study.”, Brain Imaging and Behavior, Vol. 2, No. 3, 2008, pp. 207–26.  

[2] E. Janousova, D. Schwarz, and T. Kasparek: „Combining Various Types of Classifiers and 
Features Extracted from Magnetic Resonance Imaging Data in Schizophrenia Recognition.”, 
Psychiatry Research: Neuroimaging, Vol. 232, No. 3, 2015, pp. 237–49. 

  



p_preproc 

Private function for preprocessing data. 

Syntax: 
[data_used_c, data_omit_c, used_g_ids, omit_g_ids] = p_preproc(data, omit_ids) 
[data_used_c, data_omit_c, used_g_ids, omit_g_ids] = p_preproc(data, omit_ids, 

group_ids) 

Input arguments: 
 X  ........................  data matrix to be preprocessed with subjects in rows and features in 

columns 
 omit_ids  ............  vector of indices pointing to subjects (rows) to omit from the data matrix X 
 group_ids  ..........  vector of group identifiers corresponding to subjects (rows) in X 

Output arguments: 
 X_used_c  ...........  centered data matrix with subjects retained for computation of mean 

 X_omit_c  ...........  centered data matrix with subjects specified in omit_ids 
 used_g_ids  ........  group identifiers of subjects retained for computation of mean 
 omit_g_ids  ........  group identifiers of subjects specified in omit_ids 

Description: 
The data are divided into two datasets -- the subjects to compute a mean from and the subjects 
taken out of the computation. Both datasets are then centered with the mean. If present, likewise 
is employed the division of the corresponding group identifiers. 

Examples: 
[X_train, X_test, c_ids_train] = p_preproc(X, tested_image, class_ids); 
[X_train, X_skipped] = p_preproc(X, [tested_image paired_image]); 

 
 

  



Appendix B: Automated classification tutorial 

demo_class.m 

This demo demonstrates a way to use FEATbox for leave-one-out cross-validated linear support vector 

machine classification utilizing feature extraction algorithms implemented in the toolbox – namely 

Mann-Whitney testing, isPCA, K-SVD and pattern-based morphometry (PBM). 

First, the toolbox is initialized, example data are loaded and rearranged into a data matrix of subjects 

in rows and features in columns. The code also shows how masking can be incorporated into data 

preprocessing and how *.nii images can be visualized (also with masking). Subsequently, for each of 

the feature extraction algorithms, parameters are set and the classification is employed. In the end, 

classification performance is evaluated and the results are visually inspected and compared. 

Furthermore, random projection reduction can be performed with the use of "random_projection" 

function. Typically, the data matrix can be firstly reduced and then passed to "extract_*...*" or 

"classify_*...*" functions to lower computational demands. However, as PBM creates difference 

images within the "classify_pbm" function, random projection can not take place beforehand. Thus, it 

can be set in form of a struct in the function call. Possible ways to employ random projection are also 

demonstrated in the demo on K-SVD classification. 

Suggestion: If you uncomment Mann-Whitney testing, the demo would take up to several minutes to 

compute. Thus, set it off first and take a look at the code (or other demos) while it runs. 

1. Initialization 

toolbox_path = pwd; % set a path to the toolbox 

cd(toolbox_path); % change the current working folder 

load_prerequisites( [toolbox_path,'\prerequisites'] ) 

 

% % optionally, the prerequisites can be saved to the MATLAB search path permanently 

% load_prerequisities( [toolbox_path,'\prerequisites'], 1 ) 

2. Data loading & Vizualization 

data_path = [toolbox_path,'\example_data\']; 

[class_ids,files] = xlsread([data_path,'\index_unsorted.xls'],'data','a2:b21'); % read the 

indexing table 

files = cell2mat(files); 

 

% vizualization 

toy_image = 'img24.nii'; 

display_nii( [data_path,'\',toy_image] ); % display an example image 

 

% % optionally, a mask can be applied to the data 

% load([data_path,'\mask.mat']); 

% display_nii( [data_path,'\',toy_image], mask ); % display an example image after masking 



 

3. Data matrix creation 

[X,orig_n_subjects,orig_n_voxels,original_size] = create_data_matrix( data_path, files ); 

 

% % optionally, a mask can be applied to the data 

% [X,orig_n_subjects,orig_n_voxels] = create_data_matrix( data_path, files, mask ); 

4. Feature extraction & Classification 

% % Mann-Whitney testing ... uncomment to run (computationally demanding) 

% p_threshold = 0.01; % threshold for level of significance 

% pred_class_mw = classify_mw( X, class_ids, p_threshold ); % vector of predicted classes for 

Mann-Whitney 

% 

% [accur, sens, spec, prec] = performance_eval( class_ids, pred_class_mw ); 

% perf_mw = [accur, sens, spec, prec]; 

% isPCA 

n_components = 18; % number of most discriminative components to retain 

pred_class_ispca = classify_ispca( X, class_ids, n_components ); % vector of predicted classes 

for isPCA 



 

[accur, sens, spec, prec] = performance_eval( class_ids, pred_class_ispca ); % classification 

performance 

perf_ispca = [accur, sens, spec, prec]; 

% K-SVD without random projection 

n_atoms = 19; % number of atoms 

sparsity = 5; % sparsity constraint 

RP = {}; % without random projection 

pred_class_ksvd = classify_ksvd( X, class_ids, RP, n_atoms, sparsity ); % vector of predicted 

classes for K-SVD without random projection 

 

[accur, sens, spec, prec] = performance_eval( class_ids, pred_class_ksvd ); % classification 

performance 

perf_ksvd = [accur, sens, spec, prec];  

% K-SVD with random projection 1 

n_atoms = 17; % number of atoms 

sparsity = 5; % sparsity constraint 

RP.p = 1/100; % multiplier to reduce the length of descriptors with 

RP.t = 'A'; % Achlioptas matrix 

pred_class_ksvd1 = classify_ksvd( X, class_ids, RP, n_atoms, sparsity ); % vector of predicted 

classes for K-SVD with random projection 1 

 

[accur, sens, spec, prec] = performance_eval( class_ids, pred_class_ksvd1 ); % classification 

performance 

perf_ksvd1 = [accur, sens, spec, prec];  



% K-SVD with random projection 2 

n_atoms = 17; % number of atoms 

sparsity = 5; % sparsity constraint 

X_rp = random_projection( X, 1/100, 'A' ); % reduced data matrix 

pred_class_ksvd2 = classify_ksvd( X_rp, class_ids, {}, n_atoms, sparsity ); % vector of 

predicted classes for K-SVD with random projection 2 

 

[accur, sens, spec, prec] = performance_eval( class_ids, pred_class_ksvd2 ); % classification 

performance 

perf_ksvd2 = [accur, sens, spec, prec];  

% PBM with random projection 

n_atoms = 2; % number of atoms 

sparsity = 5; % sparsity constraint 

n_neighbours = 3; % number of nearest neighbours 

RP.p = 1/100; % multiplier to reduce the length of descriptors with 

RP.t = 'A'; % Achlioptas matrix 

pred_class_pbm = classify_pbm( X, class_ids, RP, n_atoms, n_neighbours, sparsity ); % vector 

of predicted classes for PBM with random projection 

 

[accur, sens, spec, prec] = performance_eval( class_ids, pred_class_pbm ); % classification 

performance 

perf_pbm = [accur, sens, spec, prec];  

5. Visualization of classification performance 

C = [perf_ispca;perf_ksvd;perf_ksvd1;perf_ksvd2;perf_pbm]; % classification performances in 

rows 

c_names = {'isPCA','K-SVD','K-SVD1','K-SVD2','PBM'}; % names of classifiers 

show_m = [1, 1, 1, 0]; % show accuracy, sensitivity and specificity / disregard precision 

my_title = 'Comparison of classification performance' 

performance_disp( C, show_m, c_names, my_title ); % display multi-bar plot of classification 

performance 



 

  



Appendix C: Manual classification tutorial 

demo_class_manual.m 

This demo demonstrates a way to use FEATbox to create your own classification scheme utilizing one 

of the implemented algorithms, K-SVD. 

First, the toolbox is initialized, example data are loaded and rearranged into a data matrix of subjects 

in rows and features in columns. Second, the data matrix is reduced with Achlioptas random projection 

creating another data matrix. Subsequently, "extract_ksvd" function is utilized to project the data onto 

coordinates gained with K-SVD (along with a visual inspection). The reduction of the features space 

into 2-D facilitates the following k-nearest neighbours classification. Besides, a simplified leave-pair-

out cross-validation loop is implemented as follows. In every iteration, a randomly selected pair of 

subjects from different groups are taken out of a training dataset. The paired image is simply thrown 

away whereas the tested image is classified. Each of the images is chosen to be the tested one only 

once. In the end, classification performance is evaluated separately for the full and the reduced data 

matrix and the results are graphically depicted. 

Classification with other algorithms (Mann-Whitney, isPCA, PBM) is analogical – the respective 

functions are "extract-mw", "extract-ispca", "extract-pbm". 

1. Initialization 

toolbox_path = pwd; % set the location of FEATbox 

cd(toolbox_path); % change the current working folder 

load_prerequisites( [toolbox_path,'\prerequisites'] ) % check whether all pre-required 

functions are in MATLAB search path 

2. Data loading 

data_path = [toolbox_path,'\example_data\']; % set the path to data 

[class_ids,files] = xlsread([data_path,'\index_unsorted.xls'],'data','a2:b21'); % read the 

indexing table 

files = cell2mat(files); 

3. Data matrix creation 

[ X, orig_n_subjects, orig_n_voxels,original_size ] = create_data_matrix( data_path, files ); 

% create the data matrix 

4. Random projection initialization 

p = 1/100; % set a multiplier to reduce the length of descriptors with 

X_rp = random_projection( X, p, 'A' ); % data matrix reduced using (Achlioptas) random 

projection 



 

5. Use feature extraction to create your own classification scheme 
Simplified leave-pair-out classification with k-nearest neighbours classifier based on features extracted 

with KSVD 

n_atoms = 2; % number of atoms to be learned 

 

% visual estimation whether 2 atoms span a feature space in which the groups are separable 

X_proj = extract_ksvd( X, [], n_atoms ); % data projected onto new feature space 

figure; 

gscatter(X_proj(:,1),X_proj(:,2),class_ids); % show projected data 

title('Data projected onto new feature space'); 

 

% sorting data for leave-pair-out 

[class_ids_s,idx] = sort(class_ids); % sorted group identifiers 

X_s = X(idx,:); % sorted data matrix 

Xrp_s = X_rp(idx,:); % sorted reduced data matrix 

 

predictions_X = zeros(orig_n_subjects,1)-1; % vector of predicted classes (initialized to -1) 

predictions_Xrp = zeros(orig_n_subjects,1)-1; % vector of predicted classes for reduced data 

(initialized to -1) 

 



% simplified leave-pair-out classification 

for tested_image = 1:orig_n_subjects 

 

    % randomly choose an image (belonging to the other group) to be taken out of the 

    % training data set 

    if tested_image < (orig_n_subjects/2+1) % here, the data must be sorted 

        paired_image = randi([orig_n_subjects/2+1 orig_n_subjects]); 

    else 

        paired_image = randi([1 orig_n_subjects/2]); 

    end 

    ci_ksvd = class_ids_s(setdiff(1:end,[tested_image paired_image])); % class identifiers of 

training data 

 

    display(sprintf('sLPO * (KSVD + kNN): Computing %d out of %d 

...',tested_image,orig_n_subjects)); 

 

    % classification 

    [ X_ksvd , X_tested ] = extract_ksvd( X_s, [tested_image paired_image], n_atoms ); % 

training and tested data in new coordinates 

    recognized_index = knnsearch(X_ksvd,X_tested); % k-NN classification 

    predictions_X(tested_image) = ci_ksvd(recognized_index(1)); % record the predicted class 

 

    % classification based on reduced data matrix 

    [ Xrp_ksvd , Xrp_tested ] = extract_ksvd( Xrp_s, [tested_image paired_image], n_atoms ); % 

training and tested data in new coordinates 

    recognized_index = knnsearch(Xrp_ksvd,Xrp_tested); % k-NN classification 

    predictions_Xrp(tested_image) = ci_ksvd(recognized_index(1)); % record the predicted class 

 

 

end 

sLPO * (KSVD + kNN): Computing 1 out of 20 ... 

sLPO * (KSVD + kNN): Computing 2 out of 20 ... 

sLPO * (KSVD + kNN): Computing 3 out of 20 ... 

sLPO * (KSVD + kNN): Computing 4 out of 20 ... 

sLPO * (KSVD + kNN): Computing 5 out of 20 ... 

sLPO * (KSVD + kNN): Computing 6 out of 20 ... 

sLPO * (KSVD + kNN): Computing 7 out of 20 ... 

sLPO * (KSVD + kNN): Computing 8 out of 20 ... 

sLPO * (KSVD + kNN): Computing 9 out of 20 ... 

sLPO * (KSVD + kNN): Computing 10 out of 20 ... 

sLPO * (KSVD + kNN): Computing 11 out of 20 ... 

sLPO * (KSVD + kNN): Computing 12 out of 20 ... 

sLPO * (KSVD + kNN): Computing 13 out of 20 ... 

sLPO * (KSVD + kNN): Computing 14 out of 20 ... 

sLPO * (KSVD + kNN): Computing 15 out of 20 ... 

sLPO * (KSVD + kNN): Computing 16 out of 20 ... 

sLPO * (KSVD + kNN): Computing 17 out of 20 ... 

sLPO * (KSVD + kNN): Computing 18 out of 20 ... 

sLPO * (KSVD + kNN): Computing 19 out of 20 ... 

sLPO * (KSVD + kNN): Computing 20 out of 20 ... 



 

6. Performance Evaluation 

[ accur, sens, spec, prec, cm ] = performance_eval( class_ids_s, predictions_X, 1 ); % compute 

classification performance 

[ accur_rp, sens_rp, spec_rp, prec_rp, cm_rp ] = performance_eval( class_ids_s, 

predictions_Xrp, 1 ); % compute classification performance 

 

% do some evaluation ... 

ClasPer = [[accur,sens,spec,prec];[accur_rp,sens_rp,spec_rp,prec_rp]]; 

performance_disp( ClasPer, [1 1 1 1], {'data without RP (full)','data with RP (reduced)'}, 

'Random projection (RP) results comparison' ); 

 

display('-----'); 

display(sprintf('Classification accuracy with full data matrix: %.0f%s.', accur*100,'%')); 

display(sprintf('Classification accuracy with data matrix reduced %d times: %.0f%s.', 1/p, 

accur_rp*100,'%')); 

display('-----'); 

 

 

----- 

Classification accuracy with full data matrix: 85%. 

Classification accuracy with data matrix reduced 100 times: 80%. 

----- 

  



Appendix D: Feature extraction tutorial 

demo_extraction.m 

This demo demonstrates a way to use FEATbox to extract features using one of the implemented 

algorithms - Mann-Whithey testing. 

First, the toolbox is initialized, example data are loaded and rearranged into a data matrix of subjects 

in rows and features in columns. Subsequently, "extract_mw" function is utilized to select features 

significantly distinguishing between two groups in the data. The selection takes place in a leave-one-

out cross-validation loop. The selected pixels are then visualized. 

Feature extraction with other algorithms (isPCA, K-SVD, PBM) is analogical -- the respective functions 

are "extract-ispca", "extract-ksvd", "extract-pbm". 

Suggestion: This demo takes up to several minutes to compute. Thus, set it off first and take a look at 

the code (or other demos) while it runs. 

1. Initialization 

toolbox_path = pwd; % set the location of FEATbox 

cd(toolbox_path); % change the current working folder 

load_prerequisites( [toolbox_path,'\prerequisites'] ) % check whether all pre-required 

functions are in MATLAB search path 

2. Data loading 

data_path = [toolbox_path,'\example_data\']; % set the path to data 

[class_ids,files] = xlsread([data_path,'\index_unsorted.xls'],'data','a2:b21'); % read the 

indexing table 

files = cell2mat(files); 

3. Data matrix creation 

[ X, orig_n_subjects, orig_n_voxels, original_size ] = create_data_matrix( data_path, files ); 

% create the data matrix 

4. Feature extraction & Visualization 

threshold = 0.2; % set a threshold for level of significance 

selected_features = zeros(1,orig_n_voxels); % initialize a vector of selected features 

 

% leave-one-out cross-validation 

for tested_image = 1:orig_n_subjects 

 

    display(sprintf('MW extraction: Computing %d out of %d 

...',tested_image,orig_n_subjects)); 

 

    [ ~, ~, selected_ids ] = extract_mw( X, tested_image, class_ids, threshold ); % select 

features with p-values lower than the threshold 

 



    selected_features = selected_features + selected_ids; % cumulate feature across the cross-

validation loop 

 

    % the code can be extended with a classification based on selected features 

    % ........................................ 

    % ... (e.g. see "demo_class_manual.m") ... 

    % ........................................ 

 

end 

 

% visualization of features selected by MW testing cumulated across leave-one-out cross-

validation scheme 

A = reshape(selected_features,original_size); % rearrange features into a matrix 

imagesc(A); % show the features (scale: dark blue = never selected, yellow = selected in each 

iteration) 

title('MW: Set of selected voxels (cumulated across LOO)'); 

MW extraction: Computing 1 out of 20 ... 

MW extraction: Computing 2 out of 20 ... 

MW extraction: Computing 3 out of 20 ... 

MW extraction: Computing 4 out of 20 ... 

MW extraction: Computing 5 out of 20 ... 

MW extraction: Computing 6 out of 20 ... 

. . . 

MW extraction: Computing 17 out of 20 ... 

MW extraction: Computing 18 out of 20 ... 

MW extraction: Computing 19 out of 20 ... 

MW extraction: Computing 20 out of 20 ... 

 


