
Toolbox for brain image recognition using artificial neural networks 

Available from:  

http://www.iba.muni.cz/index-en.php?pg=research--data-analysis-tools--annbrainrecog_toolbox 

This toolbox is focused on brain image classification using artificial neural networks. The functions 

implemented in MATLAB® were invented during the experimentation, whose goal was to create a 

classification scheme that would be able to detect first-episode schizophrenia from images acquired from 

magnetic resonance device. The experiments resulted in two classification schemes. The first one uses single 

classifiers based on artificial neural networks (ANN) and the second scheme takes advantage of Random 

Subspace Ensemble Multi-layer Perceptron (RSE-MLP). The list of the implemented functions and their 

hierarchy are shown below. 

Single ANNs scheme 

The first scheme performs features selection using two-sample t-test. Then it uses one of the 

classifiers Multi-layer perceptron, Radian Basis Function Network and Learning Vector Quantization 

Neural Network that are trained and tested. The scheme is validated using leave-one-out cross-validation. 

The details are in the help of the functions. 

The example for this first classification scheme can be tried by running the script demo1. It comprises 

3 type of functions. The first one is for data preprocessing, where N 3D images with M voxels in NIfTI 

format are transformed to matrix of size N×M. The second function is the classification scheme with 

particular type of ANN and the third one is function to plot the results. 

RSE-MLP scheme 

The second classification scheme employs RSE-MLP. It uses two-sample t-tests applied on each 

image variable to create a features pool, from which the feature vectors are taken to train the ensemble of 

MLPs. This ensemble is used to predict the class of the testing subjects and the results are evaluated. The 

details are in the help of the functions. 

Similarly, script demo2 can be tried to run the example for Random Subspace Ensemble Multi-layer 

Perceptron. There are four types of functions. The first one is to transform images to matrix the same way 

as in demo1. The second performs the learning of the classifiers and predicting the classes of the testing 

subjects. The third one evaluates the results and finally, there is a function to plot the results. 

Requirements 

Neural Network Toolbox™ 

Statistics and Machine Learning Toolbox™ 

NIfTI toolbox - name this toolbox 'NIFTI' and place it to the directory of this toolbox 

'annBrainRecog_toolbox' 

Note 

Input data matrix X (or X_LOO) should include brain images in rows and features in columns. diseased 

must be in first rows and healthy controls must follow. Similarly, column vector y (or y_LOO) that contains 

classification classes of the brain images must be in this form: diseased must be denoted by 1 and must be 

in the first part of this vector and healthy controls must be denoted by 0 and must follow the diseased e.g. 

[1 1 1 0 0]', otherwise not all the functions work properly. 

 



The rest of documentation is organized as follows: 

i. Hierarchy of the implemented functions  

ii. List of functions with brief description, list of inputs and list of outputs 

iii. Full list of functions in alphabetical order 

iv. DEMO1: Single Artificial Neural Network Classification Scheme 

v. DEMO2: Random Subspace Ensemble Multi-layer Perceptron Classification Scheme 

i. Hierarchy of the implemented functions 
1. Single Artificial Neural Network Classification Scheme 

Example in demo1 

 prepInTar 
 mlpClas 
               createFP 
               mlp 
               evalANN 
               resTab 
 rbfClas 
               createFP 
               evalANN 
               resTab 
 lvqClas 
               createFP 
               som 
               somLab 
               lvq1 
               lvq2_1 
               evalANN 
               resTab 
 plotANN  
 

2. Random Subspace Ensemble Multi-layer Perceptron Classification Scheme 

Example in demo2 

 prepInTar 
 rseClas 
               createFP 
               chooseFV 
               mlpEnsClas 
                             mlp 
 rseEvalAVG 
               rseEvalComb 
                             genComb 
                                           genCombOverLim 
                             perfMeas 
 plotRSE 



ii. List of functions with brief description and list of inputs and outputs 
 

Name Brief description Input(s) Output(s) 

createFP creates feature vector or 
feature pool 

i, y, X_LOO, 
FP_size 

pval, positions 

evalANN evaluates the predictions 
provided by artificial neural 
networks 

predict, y overall_accuracy, 
sensitivity, 
specificity 

genComb generates combinations of 
classifiers for evaluation 

ens_size, 
ens_size_odd 

combinations 
 

genCombOverLim generates limited 
combinations of classifiers 
for evaluation 

ens_size, 
ens_size_odd 
 

combinations 
 

chooseFV chooses feature vector from 
the feature pool 

num_in, X_LOO, 
ts_LOO, 
feature_pool 

X_LOO_ens, 
ts_LOO_ens, 
input_features_save 

lvq1 performs learning vector 
quantization (LVQ1) 
algorithm 
 

X_LOO, y_LOO, 
ts_LOO, 
num_neur, 
num_epoch_lvq1, 
som_net, labels 

lvq1_net, predict 

lvq2_1 performs learning vector 
quantization (LVQ2.1) 
algorithm 

predict X_LOO, y_LOO, 
ts_LOO, 
num_epoch_lvq2_1, 
lvq1_net 

lvqClas learning vector quantization 
classification scheme 
 

X, y, num_in, 
num_neur, 
num_iter, 
lvq_type, 
num_epoch_lvq1, 
num_epoch_lvq2
_1, som_preproc, 
num_epoch_som 

T1, T2 

mlp performs multi-layer 
perceptron classification 

X_LOO, y_LOO, 
ts_LOO, 
num_neur 

predict 

mlpClas multi-layer perceptron 
classification scheme 

X, y, num_in, 
num_neur, 
num_iter 

T 

mlpEnsClas  random subspace ensemble 
multi-layer perceptron  
classification scheme 

X_LOO_ens, 
y_LOO, 
ts_LOO_ens, 
num_neur, 
ens_size_wei_init 

voting_predict_mlp, 
predict_mlp 

perfMeas Computes performance 
measures for random 
subspace ensemble based 
classifiers 

predict_rse_clas, 
ens_size_odd, y, 
combinations  
 

oa_mean, 
sen_mean, 
spe_mean 
 



plotANN plots result of single artificial 
neural network classification 
scheme 

T graph 

plotRSE plots results for random 
subspace ensemble 
classification 

performance_me
asure_mlp, 
FP_size, num_in, 
performance_me
asure_svm 

graph 

prepInTar 
 

prepares input matrix and 
target vector 

n, mask X, y 

rbfClas 
 

radial basis function neural 
network classification 
scheme 

X, y, num_in, 
max_num_neur, 
goal, spread 

T, num_neur_real 

resTab 
 

creates table with results for 
classification using artificial  
neural networks (ANN) 

name_of_classifie
r, 
overall_accuracy, 
sensitivity, 
specificity, 
num_neur, 
num_iter, num_in, 
spread 

T 

rseClas 
 

random subspace ensemble 
classification scheme 
 

X, y, ens_size, 
num_in, 
num_neur, 
FP_size, 
ens_size_wei_init
, num_iter, 
svm_comp  

predict_mlp_iter, 
feature_pool_save_i
ter, pvals_iter, 
predict_mlp_save_it
er, 
input_features_save
_iter, 
predict_svm_iter 

rseEvalAVG 
 

computes average of 
random subspace ensemble 
classification        evaluation 

y, 
predict_mlp_iter, 
ens_size, 
num_iter, num_in, 
predict_svm_iter  

oa_avg_mlp, 
sen_avg_mlp, 
spe_avg_mlp, 
oa_avg_svm, 
sen_avg_svm, 
spe_avg_svm 

rseEvalComb 
 

computes mean 
performance measures for 
random subspace           
ensemble classification 
scheme over all 
combinations of               
classifiers in ensemble  

y, predict_mlp, 
ens_size, 
num_in, 
predict_svm 
 

oa_mean_mlp, 
sen_mean_mlp, 
spe_mean_mlp, 
oa_mean_svm, 
sen_mean_svm, 
spe_mean_svm  
 

som self-organizing map neurons 
preprocessing 
 

X_LOO, 
num_neur, 
num_epoch_som 

netsom 
 

somLab 
 

self-organizing map neurons 
labeling 
 

X_LOO, y, i, 
num_neur, 
som_net 

labels 
 

 



iii. Full list of functions in alphabetical order 
 

chooseFV - chooses feature vector from the feature pool 

[X_LOO_ens, ts_LOO_ens, input_features_save] = chooseFV(num_in, X_LOO, ts_LOO, feature_pool) 

Description: 

The function 'chooseFV' randomly chooses a subspace of the feature pool to create the features vector. It 

takes this subspace from input matrix 'X_LOO' and testing sample 'ts_LOO' to prepare the information for 

training and testing of one classifier from the ensemble. 

Input variables: 

num_in          ... scalar, defines length of the feature vector 

X_LOO            ... matrix, contains preprocessed brain images in rows and features in columns, testing 

subject is left out 

ts_LOO           ... vector, contains the testing sample 

feature_pool ... vector with indices that define the positions of the feature pool in the 

image vectors 

Output variables: 

X_LOO_ens                 ... matrix, contains the chosen feature vectors from feature pool to train the      

classifiers 

ts_LOO_ens                ... vector, contains corresponding features for testing subject 

input_features_save ... vector, contains the positions of the chosen features in the image vector 

Algorithm: 

1. Random number generator is seed based on current time to ensure the randomness. 

2. The n (= 'num_in') random numbers from feature_pool are chosen. 

3. Only columns of 'X_LOO' matrix and elements of 'ts_LOO' vector corresponding to the chosen feature 

vector are preserved, the others are removed. 

 

createFP - creates feature vector or feature pool 

[pval, positions] = createFP(i, y, X_LOO, FP_size) 

Description: 

The function 'createFP' creates the feature vector that serves as an input to classification algorithms or it 

creates so-called feature pool. This function applies two-sample t-test on the X_LOO matrix. It returns the 

p-value and the position of each voxel in the X_LOO matrix. The p-values help to choose acquired amount 

of the most significant voxels that are used to create the feature vector or the feature pool. This feature 

pool is later used as a bag from which the features (voxels) are chosen to train the ensemble of classifiers. 

 



Input variables: 

i             ... index of current iteration of leave-one-out cross-validation loop 

X_LOO  ... matrix, contains brain images in rows (testing subject is left out) and features in columns; 

diseased must be in first rows and healthy controls must follow 

y            ... vector, contains classification classes of the brain images, diseased must be denoted by 1 and 

must be in the first part of this vector!!! e.g. [1 1 1 0 0]' 

FP_size ... scalar, defines the length of the feature vector (for single classifier approach) or size of the 

feature pool (for ensemble approach) 

Output variables: 

pval         ... vector, contains the p-values of the features (voxels) 

positions ... vector, contains the positions of the chosen features in image vector 

Algorithm: 

1. Number of patients (thus also number of healthy controls) is allocated. 

2. Two-sample t-test is applied on the 'X_LOO' matrix. 

3. P-values are sorted in ascending order. 

4. The positions and p-values of most significant voxels are returned. 

Notes: 

Requires Statistics and Machine Learning Toolbox™ 

 

evalANN - evaluates the predictions provided by artificial neural networks 

[overall_accuracy, sensitivity, specificity] = evalANN(predict, y) 

Description: 

The function 'evalANN' takes matrix of predicted classes for testing subjects, compare it with targets and 

computes the performance measures, which are overall accuracy, sensitivity and specificity. This function 

can be used to evaluate predictions performed by functions mlp, rbf, lvq1 and lvq2_1. 

Input variables: 

y            ... vector, contains classification classes of the brain images 

predict ... matrix, contains the classes of the testing subjects predicted by one of the artificial neural      

networks 

Output variables: 

overall_accuracy ... scalar, the value of overall accuracy 

sensitivity             ... scalar, the value of sensitivity 

specificity             ... scalar, the value of specificity 

 



Algorithm: 

1. The matrix with predictions is transformed to vector. 

2. The numbers of well- and mis- classified subjects are computed. 

3. The overall accuracy, sensitivity and specificity are computed. 

 

genComb - generates combinations of classifiers for evaluation  

[combinations] = genComb(ens_size, ens_size_odd) 

Description: 

The function 'genComb' generate combinations of indices that are later used to take subspace of 

predictions. These subspaces are supposed to be used for voting during evaluation of random subspace 

ensemble classifiers. 

Input variables: 

ens_size           ... scalar, defines number of classifiers in ensemble, must be an odd number 

ens_size_odd  ... scalar, contains odd numbers of predictions that are used to vote 

Output variable: 

combinations ... matrix, contains generated combinations of indeces that can later take subspace of       

predictions and use them to vote for final class of testing sample 

Algorithm: 

1. Compute number of all possible combinations of predictions, when 'ens_size_odd' predictions             

among 'ens_size' are used to vote. 

IF the number of the combinations is <= 10000 THEN  

    2. Generate all possible combinations of predictions. 

ELSE 

    3. Call function 'genCombOverLim' to return 10000 random combinations. 

 

genCombOverLim - generates limited combinations of classifiers for evaluation 

[combinations] = genCombOverLim( ens_size, ens_size_odd ) 

Description: 

The function 'genCombOverLim' generate 10000 random combinations of indices that are later used to 

take subspace of predictions. These subspaces are supposed to be used for voting during evaluation of 

random subspace ensemble classifiers. The combination limit helps to decrease the computational time 

and it is still big enough to keep robustness of the evaluation. 

 



Input variables: 

ens_size                 ... scalar defines number of classifiers in ensemble, must be an odd number 

ensemble_size_odd ... vector, contains odd numbers of predictions that can be used to vote 

Output variable: 

combinations ... matrix, contains generated combinations of indices that can later take subspace of 

predictions and use them to vote for final class of testing sample 

 

Algorithm: 

1. Random number generator is seed based on current time to ensure the randomness. Number of 

combination is set to 10000. And a vector to store the combinations is defined. 

2. Loop over number of combinations starts here: 

   3. 10000 random combinations are generated. 

4. Loop over number of combinations ends here. 

5. Duplicities among random combinations are deleted. 

6. WHILE the number of combinations is less than 10000, generate more combinations and 

simultaneously check for duplicities. 

 

lvq1 – performs learning vector quantization (LVQ1) algorithm 

[lvq1_net, predict] = lvq1(X_LOO, y_LOO, ts_LOO, num_neur, num_epoch_lvq1, som_net, labels) 

Description: 

The function 'lvq1' takes advantage of the Neural Network Toolbox™ and use its functions to train the LVQ 

network by LVQ1 algorithm [1] and to predict the class of the testing subject. The LVQ can take advantage 

of SOM for weight preprocessing, but it also can initialize the weights randomly. The adapted network can 

be stored and passed to another function 'LVQ2_1' to do additional training. 

Input variables: 

X_LOO                    ... matrix, includes preprocessed brain images in rows and features in columns, testing 

subject is left out 

y_LOO                   ... vector containing classes of the training subjects 

ts_LOO                   ... vector, contains the testing sample image 

num_neur            ... scalar, defines number of neurons 

num_epoch_lvq1 ... scalar, number of LVQ1 learning epochs 

som_net                 ... object, trained SOM 

labels              ... matrix, contains the labels of the neurons preprocessed by SOM 

Output variables: 

lvq1_net ... object, LVQ network trained by LVQ1 algorithm 



predict    ... scalar, the class of the testing subject predicted by LVQ network adapted on the 'X_LOO' 

matrix 

Algorithm: 

1. LVQ network is created using 'lvqnet' function from Neural Network Toolbox™ and configured. 

IF 'som_net' parameter was input to the function THEN 

   2. The weights are initialized using information from 'som_net'. 

   3. The neurons are labeled with aid of parameter 'labels'. 

ELSE the weights are initialized randomly. 

4. Number of epochs is set. 

5. Window showing the status of the training is turned off. 

6. The LVQ network is trained using LVQ1 algorithm. 

7. The class of the testing subject is predicted. 

References:  

[1] T. Kohonen, „The self-organizing map", Proc. IEEE, Vol. 78, No. 9, pp. 1464–1480, 1990. 

Notes: 

Requires Neural Network Toolbox™ 

 

lvq2_1 – performs learning vector quantization (LVQ2.1) algorithm 

[predict] = lvq2_1(X_LOO, y_LOO, ts_LOO, num_epoch_lvq2_1, lvq1_net) 

Description: 

The function 'lvq2_1' takes advantage of the Neural Network Toolbox™ and use its functions to do 

additional training of the LVQ network using LVQ2.1 algorithm [1] after the LVQ1 training was done and 

to predict the class of the testing subject. 

Input variables: 

X_LOO                        ... matrix, contains preprocessed brain images in rows and features in columns, 

testing subject is left out 

y_LOO                     ... vector containing classes of the training subjects 

ts_LOO                    ... vector, contains the testing sample image 

num_epoch_lvq2_1 ... scalar, number of training epochs 

lvq1_net                  ... object, LVQ network trained using LVQ1 algorithm 

Output variable: 

predict  ... scalar, the class of the testing subject predicted by LVQ network adapted on the X_LOO     

matrix 

Algorithm: 

1. Learning algorithm is set to LVQ2.1. 



2. Number of epochs is set. 

3. The LVQ network is trained using LVQ2.1 algorithm. 

4. The class of the testing subject is predicted. 

References:  

[1] T. Kohonen, „The self-organizing map", Proc. IEEE, Vol. 78, No. 9, pp. 1464–1480, 1990. 

Notes: 

Requires Neural Network Toolbox™ 

 

lvqClas - learning vector quantization classification scheme 

[T1, T2] = lvqClas(X, y, num_in, num_neur, num_iter, lvq_type, num_epoch_lvq1, num_epoch_lvq2_1, 

som_preproc, num_epoch_som) 

 

Description: 

The function 'lvqClas' mainly employs LVQ network for brain image classification. It contains steps for 

feature selection, neuron weights initialization using Kohonen self-organizing map (optional, but 

recommended step by author of these algorithms [1]), training of LVQ network by LVQ1 algorithm and 

additional optional training by LVQ2.1. Last steps are performance evaluation and creation of a overview 

table(s) with results. Feature selection is voxel-wise and it is performed using two-sample t-test. 

Adaptation of networks and classification of the testing subject is performed using functions from Neural 

Network Toolbox™. The classification scheme is validated using leave-one-out cross-validation (LOO-CV). 

This function takes input data from matrix X and target data from vector y. Parameters that can be adjusted 

by user are first those that can set the architecture of the network (number of inputs and neurons) and 

second those that can define number of epochs of SOM and LVQ algorithms. Since the LVQ's or SOM's 

weights are initialized randomly, the classification results are dependent on it, thus there is another 

parameter 'num_iter' that defines number of repetitions of the classification scheme. Repeating of the 

experiment could be used to gain more robust results by averaging the performance measures (overall 

accuracy, sensitivity and specificity). 

Input variables: 

X                                  ... matrix, contains brain images in rows and features in columns; diseased must be 

in first rows and healthy controls must follow 

y                                  ... vector containing classification classes of the brain images, diseased must be 

denoted by 1 and must be in the first part of this vector!!! e.g. [1 1 1 0 0]' 

num_in                       ... scalar defining a length of a feature vector, that is an input to the classification 

model 

num_neur          ... scalar, defines number of neurons 

num_iter                    ... scalar, number of repetitions of the classification process to gain more robust 

results 



lvq_type                     ... string, defines if 'LVQ1' algorithm is used or both 'LVQ1' and 'LVQ2.1' algorithms 

are   used 

num_epoch_lvq1     ... scalar, number of LVQ1 learning epochs 

num_epoch_lvq2_1 ... scalar, number of LVQ2.1 learning epochs 

som_preproc             ... logical, defines if SOM weight preprocessing is used 

num_epoch_som      ... scalar, number of SOM learning epochs 

Output variables:  

T1 ... table, includes information about applied model (name of the classifier (LVQ1), number of neurons 

and length of the feature vector) and values of performance measures (overall accuracy, 

sensitivity and specificity) 

T2 ... table, used only if the LVQ2.1 is applied, it includes the same parameters as T1 only in the column 

for name of classifier is LVQ2.1 

Algorithm: 

1. The parameters n - number of inputs, oe - expected output and matrices to store predictions from 

LVQ1 and LVQ2.1 are allocated. 

2. LOO-CV loop starts here: 

  3. Testing subject is left out. 

  4. Feature selection based on two-sample t-tests is done by function 'createFP'. 

  IF som_preproc == 1 THEN  

      5. The function 'som' is called. This function takes input matrix and initialize the weights of the 

neurons. For details see description of 'som' function in this documentation. 

      6. A class name is allocated to each neuron by 'somLab' function.  

  7. The LVQ network is trained by LVQ1 algorithm with aid of function 'lvq1' and the testing sample class 

is predicted. 

  IF lvq_type == 'LVQ2.1' 

      8. LVQ2.1 algorithm is applied to train the network with aid of function 'LVQ2_1'. 

9. LOO-CV ends here. 

7. Variables to store the performance measures are declared. 

8. Function 'evalANN' is called. This function takes matrix with predicted classes of the testing samples 

and target vector and it returns overall accuracy, sensitivity and specificity. If LVQ2.1 algorithm is used, 

the performance meassures are computed for the predictions provided by this additionally trained 

network. 

9. Function 'resTab' is called. It returns table(s) with results. See description of 'Output variables'. 

References:  

[1] T. Kohonen, „The self-organizing map", Proc. IEEE, Vol. 78, No. 9, pp. 1464–1480, 1990. 

Notes: 

Requires Neural Network Toolbox™ and Statistics and Machine Learning Toolbox™ 

 

 



mlp – performs multi-layer perceptron classification 

[predict] = mlp(X_LOO, y_LOO, ts_LOO, num_neur) 

Description: 

The function 'mlp' takes advantage of the Neural Network Toolbox™ and use its functions to train the MLP 

and to predict the class of the testing subject. In this function, the basic settings of MLP is adjusted in order 

to train the network fast and perform well on neuroimaging data. For further information about the 

parameters used here see Matlab documentation: http://www.mathworks.com/help/nnet/index.html 

Input variables: 

X_LOO        ... matrix, contains preprocessed brain images in rows and features in columns, testing 

subject is left out 

y_LOO        ... vector containing classes of the training subjects 

ts_LOO       ... vector, contains the testing sample image 

num_neur ... scalar or vector containing number of neurons, where each element of this vector 

determines one hidden layer 

Output variable: 

predict ... scalar, the class of the testing subject predicted by multi-layer perceptron adapted on the 

'X_LOO' matrix 

Algorithm: 

1. MLP network is created using 'patternnet' function from Neural Network Toolbox™. 

2. All data in matrix 'X_LOO' are defined as training data. 

3. Training function is defined scaled conjugate gradient backpropagation. 

4. The function that is minimized during training phase is defined as cross-entropy. 

5. Window showing the status of the training is turned off. 

6. The MLP is trained. 

7. The class of the testing subject is predicted. 

Notes: 

Requires Neural Network Toolbox™ 

 

mlpClas - multi-layer perceptron classification scheme 

[T] = mlpClas(X, y, num_in, num_neur, num_iter) 

Description: 

The function 'mlpClas' employs multi-layer perceptron for brain image classification. It contains steps for 

feature selection, classifier adaptation, classification of a testing subjects, performance evaluation and 

creation of an overview table with results. Feature selection is voxel-wise and it is performed using two-

sample t-test. Adaptation and classification of the testing subject is performed using functions from Neural 



Network Toolbox™. The classification scheme is validated using leave-one-out cross-validation (LOO-CV). 

This function takes input data from matrix X and target data from vector y. Number of inputs and neurons 

are parameters of this function that can be adjusted by user. Since the multi-layer perceptron's weights 

are initialized randomly, the classification results are affected by it, thus there is another parameter 

'num_iter' that defines number of repetitions of the classification scheme. Repeating of the experiment 

could be used to gain more robust results by averaging the performance measures (overall accuracy, 

sensitivity and specificity). 

Input variables: 

X                 ... matrix, contains brain images in rows and features in columns; diseased must be in first 

rows and healthy controls must follow 

y                  ... vector, contains classification classes of the brain images, diseased must be denoted by 1 

and must be in the first part of this vector!!! e.g. [1 1 1 0 0]' 

num_in      ... scalar, defines a length of a feature vector, that is an input to the classification model 

num_neur ... scalar or vector, contains number of neurons, where each element of this vector 

determines one hidden layer 

num_iter   ... scalar, number of repetitions of the classification process to gain more robust results 

Output variable: 

T ... table, that includes information about applied model (name of the classifier (MLP), number of 

neurons and length of the feature vector) and values of performance measures (overall accuracy, 

sensitivity and specificity) 

Algorithm: 

1. The parameters n - number of inputs, oe - expected output are defined and matrix to store prediction 

is allocated. 

2. LOO-CV loop starts here: 

  3. Testing subject is left out. 

  4. Feature selection based on two-sample t-tests is done by function 'createFP'. 

  5. Function 'mlp' is called. This function takes input matrix, target vector, testing subject and 

information about MLP architecture and returns the predicted class (see in documentation function 

'mlp'). 

6. LOO-CV ends here. 

7. Variables to store the performance measures are allocated. 

8. Function 'evalANN' is called. This function takes matrix with predicted classes of the testing samples 

and target vector and it returns overall accuracy, sensitivity and specificity. 

9. Function 'resTab' is called. It returns table with results. See description of 'Output variable'. 

Notes: 

Requires Neural Network Toolbox™ and Statistics and Machine Learning Toolbox™ 

 



mlpEnsClas - random subspace ensemble multi-layer perceptron classification 

scheme 

[voting_predict_mlp, predict_mlp] = mlpEnsClas(X_LOO_ens, y_LOO, ts_LOO_ens, num_neur, 

ens_size_wei_init) 

The function 'mlpEnsClas' performs repeating MLP training and testing. Since the weights are initialized 

randomly, in this function the MLP training is repeated 'ens_size_wei_init' times to gain multiple 

predictions of the testing sample class. These predictions are used to vote for the final testing sample class. 

Input variables: 

X_LOO_ens            ... matrix, contains the chosen feature vectors from the feature pool to train the 

classifiers 

y_LOO                     ... vector, includes class the subjects belong to 

ts_LOO_ens           ... vector, contains corresponding features for testing subject 

num_neur              ... scalar or vector containing number of neurons, where each element of this vector 

determines one hidden layer 

ens_size_wei_init ... scalar, odd number, defines the number of MLPs that are trained and tested here 

and used to predict the class of the testing sample 

Output variables: 

voting_predict_mlp ... scalar, the class of the testing subject predicted by multi-layer perceptron adapted 

on the 'X_LOO' matrix 

predict_mlp              ... matrix, stores predictions of each MLP used in this function 

Algorithm: 

1. A matrix 'predict_mlp' is declared. 

2. Loop for training the MLPs starts here: 

  3. The function 'mlp' is called to train MLP and predict class of the testing subject. 

4. Loop for training the MLPs ends here. 

5. The predictions of all the MLPs are used to vote the final class of the testing subject. 

Notes: 

Requires Neural Network Toolbox™ 

 

 

 

 

 

 



perfMeas - computes performance measures for random subspace ensemble 

based classifiers 

[oa_mean, sen_mean, spe_mean] = perfMeas(predict_rse_clas, ens_size_odd, y, combinations) 

Description: 

The function 'perfMeas' computes performance measures (overall accuracy, sensitivity and specificity) for 

each combination of predictions generated by function 'genComb'. The results are then averaged and thus 

more robust estimation of performance measures is computed. 

Input variables: 

predict_rse_clas ... matrix, contains the testing subject class prediction of each classifier in ensemble 

ens_size_odd      ... scalar, number of voting classifiers 

y                             ... vector containing classes the subjects belong to, diseased must be denoted by 1  and 

must be in the first part of this vector!!! e.g. [1 1 1 0 0]' 

combinations      ... matrix, contains generated combinations of indices that take subspace of predictions 

and use them to vote for final class of testing sample 

Output variables: 

oa_mean  ... scalar, contains overall accuracy for defined feature vector length and for defined odd 

number of classifiers in ensemble 

sen_mean ... scalar, contains sensitivity for defined feature vector length and for defined odd number of 

classifiers in ensemble 

spe_mean ... scalar, contains specificity for defined feature vector length and for defined odd number of 

classifiers in ensemble 

Algorithm: 

1. 3D matrix to save confusion matrices for each combination of predictions is declared. 

2. Loop over prediction combinations number starts here: 

   3. The voting of all possible combinations of predictions is performed. 

4. Loop over prediction combinations number ends here. 

5. Performance measures (overall accuracy, sensitivity and specificity) for all combinations of predictions 

are computed. 

6. Mean performance measures are computed over all combinations of prediction. 

 

 

 

 

 



plotANN - plots result of single artificial neural network classification scheme 

plotANN(T) 

Description: 

The function 'plotANN' makes graph with the results from classifications of brain images with aid of 

artificial neural networks. It takes information from table with results and draw point values or boxplots 

of three performance measures overall accuracy, sensitivity and specificity. The graphs are fully described. 

The layout of the figure can be further adjusted by investigator in the figure window. 

Input variable: 

T  ... table, contains information about applied classification model (name of the classifier, number of 

neurons and length of the feature vector, spread - in case of RBF network) and values of 

performance measures (overall accuracy, sensitivity and specificity) 

Output: 

graph ... the output of this function is a window with drawn graph 

Algorithm: 

IF table 'T' includes only one row with result THEN 

  1. Plot point values of the performance measures. 

  2. Set labels, colors and title. 

ELSE 

  3. Plot boxplots of the performance measures. 

  4. Set labels, colors and title. 

 

plotRSE - plots results for random subspace ensemble classification 

plotRSE(performance_measure_mlp, FP_size, num_in, performance_measure_svm) 

Description: 

The function 'plotRSE' plots a figure for RSE-based classification. Using this figure, the trends of ensemble 

learning can be observed and RSE-MLP and RSE-SVM can be compared easily. Function is prepared only 

for 3 or less sizes of input vectors not to make the figure difficult to read. 

Input variables: 

performance_measure_mlp ... matrix, contains results of some performance measure for RSE-MLP for all 

explored lengths of feature vector and all odd numbers of voting 

classifiers 

FP_size              ... scalar, defines the size of the feature pool 

num_in              ... scalar or vector, defines lengths of feature vectors 

performance_measure_svm ... matrix, contains performance measures for RSE-SVM for all explored 

lengths feature vector and all odd numbers of voting classifiers 



Output:  

Graph that shows results for RSE-MLP and eventually compare it with RSE-SVM 

Algorithm: 

1. Vectors of symbols (for MLP) and colors used in chart are defined. 

IF nargin > 3 i.e. SVM performance measures are input of this function. 

   2. Vector of symbols (for SVM) used in chart are defined. 

3. Matrix 'legend_text' to store information used in legend is allocated. 

4. Loop over different feature vectors lengths starts here: 

   5. Performance measure for RSE-MLP and defined feature vector length is plotted. 

   6. Legend text of this plot is generated and saved. 

IF nargin > 3 i.e. SVM performance measures are input of this function. 

   7. Performance measure for RSE-SVM and defined feature vector length is plotted. 

   8. Legend text of this plot is generated and saved. 

9. Loop over different feature vectors lengths ends here. 

10. The title, labels and values of axes x and y and legend are added to the plot. 

 

prepInTar - prepares input matrix and target vector 

[ X, y ] = prepInTar(n, mask) 

Description: 

The function 'prepInTar' prepares example NIfTI image data format to the required form i.e. matrix X, 

where rows are subjects and columns are variables and target vector y, where first part of this vector are 

ones (denotes patients) and are second part are zeros (denotes healthy controls). The example dataset 

contains pictures of circles and triangles. During the preparation of the required data format a mask that 

was prepared to delete background of the pictures is applied. This function was prepared for DEMOs of 

this toolbox, however it can be used for any other dataset. The images must be located in example_data 

directory and their names and class must be in index.xls in this directory (see this file to understand its 

structure). 

 

Input variable: 

n ... number of images 

 

Output variables: 

X ... matrix, contains brain images in rows and features in columns 

y ... vector, contains classification classes of the brain images 

 

Algorithm: 

1. The directory is changed to 'example_data' directory that is in the toolbox. This directory must include 

images in nifty format and excel document with names of the brain images in column A (from A2 to AN) 

and labels of the brain images in column B (from B2 to BN).  



2. Excel document i read and names of images and labels are stored. 

3. The directory is changed to NIfTI directory, that must be in the toolbox. 

4. Images are loaded, transformed (the mask is applied) and saved to the matrix X. 

 

Note: 

Requires NIfTI toolbox. 

 

rbfClas - radial basis function neural network classification scheme 

[T, num_neur_real] = rbfClas( X, y, num_in, max_num_neur, goal, spread ) 

Description: 

The function 'rbfClas' takes advantage of RBF network for brain image classification. It contains steps for 

feature selection, classifier adaptation, classification of a testing subject, performance evaluation and 

creation of an overview table with results. Feature selection is voxel-wise and it is performed using two-

sample t-test. Training of RBF network [1] and classification of the testing subject is performed using 

functions from Neural Network Toolbox™. The classification scheme is validated using leave-one-out cross-

validation (LOO-CV). This function takes input data from matrix X and target data from vector y. Number 

of inputs, neurons, goal and spread are parameters of this function that can be adjusted by user. 

Input variables: 

X                           ... matrix, contains brain images in rows and features in columns; diseased must be in 

first rows and healthy controls must follow 

y                            ... vector containing classification classes of the brain images, diseased must be denoted 

by 1 and must be in the first part of this vector!!! e.g. [1 1 1 0 0]' 

num_in                ... scalar defining a length of a feature vector, that is an input to the classification model 

max_num_neur ... scalar, defines maximal number of neurons 

goal                      ... scalar defining the value of error function, when the adaptation should be stopped; 

when goal is zero, then 'max_num_neur' = final number of neurons 

spread                  ... scalar, defines the size of the area around the RBF neurons with influence on the 

output   of this RBF neuron 

Output variables: 

T                           ... table, contains information about applied model (name of the classifier (RBF), number 

of neurons, length of the feature vector and spread) and values of performance 

measures (overall accuracy, sensitivity and specificity) 

num_neur_real ... real number of neurons, when goal is not equal zero 

Algorithm: 

1. The parameters n - number of inputs, oe - expected output are defined and matrix to store prediction 

is allocated. 

2. LOO-CV loop starts here: 

  3. Testing subject is left out. 



  4. Feature selection based on two-sample t-tests is done by function 'createFP'. 

  5. Function 'newrb' from 'Neural Network Toolbox' is called. This function takes input matrix, target 

vector, goal, spread and maximal number of neurons and train the RBF network (see the documentation 

of 'Neural Network Toolbox'). 

  6. The class of the testing subject is predicted and stored. 

7. LOO-CV ends here. 

8. Variables to store the performance measures are allocated. 

9. Function 'evalANN' is called. This function takes matrix with predicted classes of the testing samples 

and target vector and it returns overall accuracy, sensitivity and specificity. 

10. Function 'resTab' is called. It returns table with results. See description of 'Output variable'. 

References:  

[1] S. Chen, C. F. N. Cowan, a P. M. Grant, „Orthogonal least squares learning algorithm for radial basis 

function networks", Vol. 2, No. 2, pp. 302–309, 1991. 

Notes: 

Requires Neural Network Toolbox™ and Statistics and Machine Learning Toolbox™ 

 

resTab – creates table with results for classification using artificial neural 

networks (ANN) 

[T] = resTab(name_of_classifier, overall_accuracy, sensitivity, specificity, num_neur, num_iter, num_in, 

spread) 

Description: 

The function 'resTab' creates a table to summarize parameters used for ANN-based brain image 

classification and the results. 

Input variables: 

name_of_classifier ... character, name of the ANN classifier 

overall_accuracy     ... vector, the n values of overall accuracies (n='num_iter') 

sensitivity                 ... vector, the n values of sensitivities (n='num_iter') 

specificity                 ... vector, the n values of specificities (n='num_iter') 

num_in                     ... scalar, defines a length of a feature vector, that is an input to the classification 

model 

num_neur                ... scalar or vector containing number of neurons, where each element of this vector 

determines one hidden layer 

num_iter                  ... scalar, number of repetitions of the classification process to gain more robust 

results 

spread                      ... scalar, defines the size of the area around the RBF neurons with influence on the 

output of this RBF neuron 

 



Output variable: 

T ... table, includes information about applied classification model (name of the classifier, number of 

neurons and length of the feature vector, spread - in case of RBF network) and values of 

performance measures (overall accuracy, sensitivity and specificity) 

Algorithm: 

1. Prepare future columns of the table (number of neurons, number of inputs and performance 

measures). 

IF nargin < 8 i.e. spread is not an input THEN 

   2. Create table 

ELSE  

   3. Define column for spread. 

   4. Create table. 

rseClas - random subspace ensemble classification scheme 

[predict_mlp_iter, feature_pool_save_iter, pvals_iter, predict_mlp_save_iter, input_features_save_iter, 

predict_svm_iter] = rseClas(X, y, ens_size, num_in, num_neur, FP_size, ens_size_wei_init, num_iter, 

svm_comp) 

Description: 

The function 'rseComp' performs computation of Random Subspace Ensemble Multi-layer Perceptron. The 

classification scheme is validated with aid of leave-one-out cross-validation. It takes input data from matrix 

X and target data from vector y. The experiment settings are adjusted by input parameters. The RSE-MLP 

can be compared to Random Subspace Ensemble Support Vector Machines. The robustness of the results 

can be further ensured by repetition of this experiment using parameter num_iter. 

Input variables: 

X                              ... matrix, contains brain images in rows and features in columns; diseased must be in 

first rows and healthy controls must follow 

y                              ... vector containing classification classes of the brain images, diseased must be 

denoted by 1 and must be in the first part of this vector!!! e.g. [1 1 1 0 0]' 

ens_size                 ... scalar, defines number of classifiers in ensemble, must be an odd number 

num_in                  ... scalar or vector, defines lengths of feature vectors 

num_neur             ... scalar or vector containing number of neurons, where each element of this vector 

determines one hidden layer 

FP_size                   ... scalar, defines the size of the feature pool 

ens_size_wei_init ... scalar, defines the number of the MLPs that votes for class in first voting, must be an 

odd number 

num_iter                ... scalar, number of repetitions of the experiment to gain robust results 

svm_comp             ... logical, defines if the comparison with SVM is performed (1) or not (0) 

 

 



Output variables: 

predict_mlp_iter                ... matrix with prediction of the testing subject class by MLP for each iteration 

of LOO, each classifier in ensemble, each length of the feature vector and 

each experiment repetition 

feature_pool_save_iter    ... matrix, contains indices of voxels that form the feature pool for each 

iteration of LOO and each experiment repetition 

pvals_iter                             ... matrix, contains p-values of voxels that form the feature pool for each 

iteration of LOO and each experiment repetition 

predict_mlp_save_iter      ... matrix with predictions of the testing subject class by each MLP trained 

during the experiment, before the first voting 

input_features_save_iter ... cell array, stores the randomly chose subspace ensembles for each iteration 

of LOO, each classifier in ensemble, each length of the feature vector and 

each experiment repetition 

predict_svm_iter                ... matrix with prediction of the testing subject class by SVM for each iteration 

of LOO, each classifier in ensemble, each length of the feature vector and 

each experiment repetition 

Algorithm: 

1. The declaration of parameters n - number of subjects, eo – expected outputs and matrices to store the 

results. 

2. Loop for the experiment repetition starts here: 

  3. Leave-one-out cross-validation loop starts here: 

      4. The testing subject is left out from the data matrix and target vector. 

      5. Feature pool of defined size is created using function 'createFP'. 

      6. Loop for computing over defined lengths of feature vectors starts here: 

          7. Loop for computing over the number of classifiers in ensemble starts here: 

              8. The feature vector of defined size is chosen using function 'chooseFV'. 

              9. The function 'mlpEnsClas' is called. This function returns class of the testing subject based               

on classification by MLP. For details see description of this function. 

              IF SVM comparison is required: 

                  10. SVM is trained and the classification of the testing subject is performed by functions from 

Statistics and Machine Learning Toolbox™. 

          11. Loop for counting over the number of classifiers in ensemble ends here. 

   12. Loop for counting over defined lengths of feature vectors ends here. 

  13. Leave-one-out cross-validation loop ends here. 

  14. The predicted classes of testing subjects are stored. 

15. Loop for experiment repetition ends here. 

Notes: 

Requires Neural Network Toolbox™ and Statistics and Machine Learning Toolbox™ 

To understand the structure of output matrices, please, see comments in the code in the place, where 

these matrices are allocated 

 



rseEvalAVG - computes average of random subspace ensemble classification        

evaluation 

[ oa_avg_mlp, sen_avg_mlp, spe_avg_mlp, oa_avg_svm, sen_avg_svm, spe_avg_svm ] = rseEvalAVG( y, 

predict_mlp_iter, ens_size, num_iter, num_in, predict_svm_iter ) 

Description: 

The function 'rseEvalAVG' average the results gained by repeating the RSE-MLP and RSE-SVM experiments. 

It can be used either only for RSE-MLP or for both RSE-MLP and RSE-SVM, if RSE-SVM experiment was 

performed. 

Input variables: 

y                             ... vector containing classes the subjects belong to, diseased must be denoted by 1 and 

must be in the first part of this vector!!! e.g. [1 1 1 0 0]' 

predict_mlp_iter ... matrix with prediction of the testing subject class by MLP for each iteration of LOO, 

each classifier in ensemble, each length of the feature vector and each experiment 

repetition 

ens_size                ... scalar, defines number of classifiers in ensemble, must be an odd number 

num_iter               ... scalar, number of repetitions of the experiment to gain robust results 

num_in                  ... scalar or vector, defines lengths of feature vectors 

predict_svm_iter ... matrix with prediction of the testing subject class by SVM for each iteration of LOO, 

each classifier in ensemble, each length of the feature vector and each experiment 

repetition 

Output variable:  

oa_avg_mlp   ... matrix, contains averaged overall accuracies for all explored feature vector lengths and 

for all odd numbers of MLP classifiers in ensemble 

sen_avg_mlp ... matrix, contains averaged sensitivities for all explored feature vector lengths and for all 

odd numbers of MLP classifiers in ensemble 

spe_avg_mlp ... matrix, contains averaged specificities for all explored feature vector lengths and for all 

odd numbers of MLP classifiers in ensemble 

oa_avg_svm   ... matrix, contains averaged overall accuracies for all explored feature vector lengths and 

for all odd numbers of SVM classifiers in ensemble 

sen_avg_svm ... matrix, contains averaged sensitivities for all explored feature vector lengths and for all 

odd numbers of SVM classifiers in ensemble 

spe_avg_svm ... matrix, contains averaged specificities for all explored feature vector lengths and for all 

odd numbers of SVM classifiers in ensemble 

Algorithm: 

1. The matrices to store the performance measures (overall accuracy, sensitivity and specificity) for RSE-

MLP are declared. 

IF nargin == 6 i.e. the RSE-SVM was used in the experiment THEN 

   2. The matrices to store the performance measures (overall accuracy, sensitivity and specificity) for 

RSE-SVM are declared. 



3. Loop over 'num_iter' starts here: 

   4. Function 'compPerform' is called to compute the performance measures for RSE-MLP. 

   IF nargin < 6 i.e. the RSE-SVM was used in the experiment THEN 

      5. Function 'compPerform' is called to compute the performance measures for both RSE-MLP and 

RSE-SVM. 

      6. The performance measures of RSE-SVM are added to storage matrix to be later averaged 

   7. The performance measures of RSE-MLP are added to storage matrix to be later averaged 

8. Loop over 'num_iter' ends here. 

9. Performance measures of RSE-MLP are divided by 'num_iter' to gain the average. 

IF nargin < 6 i.e. the RSE-SVM was used in the experiment THEN 

   10. Performance measures of RSE-SVM are divided by 'num_iter' to gain the average. 

Notes: 

To understand the structure of output matrices, please, see comments in the code in the place, where 

these matrices are allocated 

 

rseEvalComb – computes mean performance measures for random subspace 

ensemble classification scheme over all combinations of classifiers in ensemble               

[oa_mean_mlp, sen_mean_mlp, spe_mean_mlp, oa_mean_svm, sen_mean_svm, spe_mean_svm] = 

rseEvalComb( y, predict_mlp, ens_size, num_in, predict_svm) 

Description: 

The function 'rseEvalComb' compute mean performance measures of classifiers RSE-MLP and RSE-SVM. 

The ensemble of classifiers generates N predictions. To explore how well the ensemble help, 1, 3, 5, ...and 

other odd number of predictions can vote for the final classification class and the trend can be explored. 

Furthermore, all the combinations of 1, 3, 5,... predictions among N can vote. This function takes these 

combinations into consideration and call the function to evaluate the RSE-MLP and RSE-SVM approaches. 

Input variables: 

y                     ... vector containing classes the subjects belong to diseased must be denoted by 1 and must 

be in the first  part of this vector!!! e.g. [1 1 1 0 0]' 

predict_mlp ... matrix, contains predictions for all testing subjects, used classifiers in ensemble and input 

feature vectors 

ens_size        ... scalar defines number of classifiers in ensemble, must be an odd number 

num_in         ... scalar or vector, defines lengths of feature vectors 

predict_svm ... matrix, contains predictions for all testing subjects, used classifiers in ensemble and input 

feature vectors 

Output variables:  

oa_mean_mlp  ... matrix, contains overall accuracies for all odd number of MLP classifiers in ensemble 

(averaged over many combinations of voting classifiers) and explored feature vector 

lengths 



sen_mean_mlp ... matrix, contains sensitivities for all odd number of MLP classifiers in ensemble 

(averaged over many combinations of voting classifiers) and explored feature vector 

lengths 

spe_mean_mlp ... matrix, contains specificities for all odd number of MLP classifiers in ensemble 

(averaged over many combinations of voting classifiers) and explored feature vector 

lengths 

oa_mean_svm  ... matrix, contains overall accuracies for all odd number of SVM classifiers in ensemble 

(averaged over many combinations of voting classifiers) and explored feature vector 

lengths 

sen_mean_svm ... matrix, contains sensitivities for all odd number of SVM classifiers in ensemble 

(averaged over many combinations of voting classifiers) and explored feature vector 

lengths 

spe_mean_svm ... matrix, contains specificities for all odd number of SVM of SVM classifiers in ensemble 

(averaged over many combinations of voting classifiers) and explored feature vector 

lengths 

Algorithm: 

1. Definition of vector 'ens_size_odd' (its elements are all odd numbers of predictions that can vote) and 

matrices to store the performance measures (overall accuracy, sensitivity and specificity) for RSE-MLP 

are allocated. 

IF nargin > 4 i.e. the RSE-SVM was used in the experiment THEN 

   2. Matrices to store the performance measures (overall accuracy, sensitivity and specificity) for RSE-

MLP are allocated. 

3. Loop over feature vectors lengths starts here: 

   4. Loop over all odd numbers of predictions starts here: 

      5. Function 'genComb' is called to generate all combinations of defined number of classification 

predictions that vote among all classification predictions. 

      6. Function 'perfMeas' is called to count mean performance measures for MLP over all combinations 

defined by 'genComb'. 

      IF nargin > 4 i.e. the RSE-SVM was used in the experiment THEN 

         7. Function 'perfMeas' is called to count mean performance measures for SVM over all 

combinations defined by 'genComb'. 

      8. Loop over all odd numbers of predictions ends here. 

   9. Loop over feature vectors lengths ends here. 

Notes: 

To understand the structure of output matrices, please, see comments in the code in the place, where 

these matrices are allocated 

 

 

 

 



som - self-organizing map neurons preprocessing 

[netsom] = som(X_LOO, num_neur, num_epoch_som) 

Description: 

The function 'som' takes advantage of the Neural Network Toolbox™ and use its functions to train the SOM 

[1]. It approximates the distribution of data and initialize the neurons weights. This step is recommended 

by T. Kohonen - the author of SOM and LVQ networks - before LVQ network is used for classification to 

improve the results. This function offers only one dimensional SOM and initial neighborhood size equal 3 

and should be used after taking these issues into account or should be manually changed to fulfil the 

requirements. This function is recommended only when the data set includes similar number of patients 

and healthy controls, since using function 'somLab' the same number of neurons is assigned to each group. 

Input variables: 

X_LOO                    ... matrix, contains brain images in rows (testing subject is left out) and features in 

columns; diseased must be in first rows and healthy controls must follow (required 

when function 'somLab' is used afterwards) 

num_neur         ... scalar, defines number of neurons 

num_epoch_som ... number of training epochs of SOM 

Output variable: 

netsom ... object, trained SOM 

Algorithm: 

1. Parameters related to SOM training (dimension of map, number of neighbors when starting the 

adaptation and distance function) are defined. 

2. SOM network is created using 'selforgmap' function from Neural Network Toolbox™. 

3. Window showing the status of the training is turned off. 

4. The SOM is trained. 

References:  

[1] T. Kohonen, „The self-organizing map", Proc. IEEE, Vol. 78, No. 9, pp. 1464–1480, 1990. 

Notes: 

Requires Neural Network Toolbox™  

 

 

 

 

 



somLab - self-organizing map neurons labeling 

[labels] = somLab(X_LOO, y, i, num_neur, som_net) 

Description: 

The function 'somLab' adds the labels to the neurons initialized by the function 'som' that is a part of this 

toolbox. Both functions are recommended when the data set includes similar number of patients and 

healthy controls, since the same number of neurons is assigned to each group. 

Input variables: 

X_LOO        ... matrix, contains brain images in rows (testing subject is left out) and features in columns; 

diseased must be in first rows and healthy controls must follow 

y                  ... vector, contains classes the training subjects belong to, diseased must be denoted by 1 and 

must be in the first part of this vector!!! e.g. [1 1 1 0 0]' 

i                   ... index of current iteration of leave-one-out cross-validation loop 

num_neur ... scalar, defines number of neurons 

netsom       ... object, trained SOM 

Output variable: 

labels ... matrix, defines what class the neurons represent 

Algorithm: 

1. Matrices ED and labels are allocated. 

2. Matrix ED is filled with Euclidean distances between all neurons and training subjects. 

3. The closest neuron to each training subject is found. 

4. Tables with neurons and number of subjects, for which these neurons are winners, are made. The 

tables are two, one for patients and one for healthy subjects. 

5. Loop over the (half) number of neurons starts here: 

   6. The neuron that is the winner neuron for most patients is labeled as 'patient neuron'. The class of 

this neuron cannot be later changed. 

   7. The neuron that is the winner neuron for most healthy controls is labeled as 'healthy neuron'. The 

class of this neuron cannot be later changed. 

8. Loop over the (half) number of neurons ends here. 

9. Assign label to the unlabeled neurons. This is correction for situation, if the Nth neuron (and previous 

neurons) never won for any subject, then these neurons do not appear in the tables from 4. and 

therefore less than N neurons are labeled during 5-8. 

  



iv: DEMO1: Single Artificial Neural Network Classification Scheme 
The purpose of this DEMO is to present how to use the 'Toolbox for Brain Image Recognition Using Artificial 

Neural Networks' (ANN) to classify images using single classifiers based on artificial neural networks. After 

going throug this DEMO, the user should be able to apply the classification scheme that consists of feature 

selection using two-sample t-tests, training of the classifier (both within leave-one-out cross-validation) 

and evaluation of the results. Finally the results can be shown in the graph. The neural network classifiers 

available are Multi-layer Perceptron (MLP) Neural Network, Radial Basis Function (RBF) Neural Network 

and Learning Vector Quantization (LVQ) Neural Network. 

demo1 contains 4 steps: 

1. Data Preparation 

In the first step, the function to load the example data is applied. 

2. Classifier Selection 

In the second step, function that uses a neural network in the classification scheme is chosen. It is shown 

how to use schemes with MLP, RBF and LVQ. Several parameters can be defined when applying one of the 

ANNs for classification. These parameters are architecture of ANNs i.e. number of neurons, layers of 

neurons, goal of error function and spread of RBF neurons for RBF network and number of training epochs 

for LVQ networks. To train the LVQ network, LVQ1 learning algorithm or both LVQ1 and LVQ2.1 learning 

algorithms can be applied. Furthermore, Kohonen's Self-organizing Map can be used to preprocess the 

weights of neurons used in LVQ network. Parameter 'num_iter' defines number of experiment repetitions, 

since MLP and LVQ contain random steps. The results can be then for example averaged. The parameters 

are defined in this DEMO to show the examples that lead to good results. The output of this function is 

table with the results. 

In this step, the user selects the type of classifier: 

For example: 

Choose neural network type: options - 'MLP','RBF','LVQ1','LVQ2.1': 'MLP' 

The single ANN scheme is then applied on the example data set and the table(s) with results are returned 

after all iteration of leave-one-out cross-validation are done: 

LOO - iteration: 1/20 
LOO - iteration: 2/20 
LOO - iteration: 3/20 
LOO - iteration: 4/20 
… 
LOO - iteration: 20/20 

 

3. The Results 

In the third step, the performance measures (accuracy, sensitivity and specificity) are printed: 

MLP:  

Mean overall accuracy:0.91 
Mean sensitivity:0.88 
Mean specificity:0.94 



RBF:  

Overall accuracy:0.7 
Sensitivity:0.8 
Specificity:0.6 

LVQ trained by LVQ1 algorithm: 

Mean overall accuracy:0.58333 
Mean sensitivity:0.73333 
Mean specificity:0.43333 

LVQ trained by LVQ1 and LVQ2.1 algorithms and preprocessed by SOM: 

LVQ1 

Mean overall accuracy:0.78333 
Mean sensitivity:0.86667 
Mean secificity:0.7 

LVQ2.1 

Mean overall accuracy:0.78333 
Mean sensitivity:0.86667 
Mean specificity:0.7 

4. Plot Figure(s) with Performance Measures 

The graphs for chosen neural network classifier are drawn in the last step. 

MLP: 

 

 



RBF: 

 

LVQ trained by LVQ1 agorithm: 

 



LVQ trained by LVQ1 and LVQ2.1 algorithms and preprocessed by SOM: 

 

 

 



v. DEMO2: Random Subspace Ensemble Multi-layer Perceptron 

Classification Scheme 
The main goal of demo2 is to go through the functions that perform the classification scheme based on 

Random Subspace Ensemble Multi-layer Perceptrons (RSE-MLP). In this classification scheme a feature 

pool that contains only limited amount of the most significant voxels that distingusish between the groups 

of diseased and healthy controls based on two sample t-tests is prepared. The ensemble of classifiers is 

based on the randomly chosen features from this feature pool. Leave-one-out cross-validation method is 

used and includes both feature pool creation and classification phases. Several parameters can be defined 

and explored within the scheme, therefore it is said here how to adjust them. The classification accuracy 

is finally computed and corresponding graphs drawn. 

demo2 contains 4 steps: 

1. Data Preparation 

In the first step, the function to load the example data is applied. 

2. Train the Random Subspace Ensemble Multi-layer Perceptron 

The purpose of the second step, is to use the function that train and test the ensembles of Multi-layer 

perceptrons (MLP) on the subspaces of features. Several parameters can be explored when applying this 

scheme: number of classifiers in ensemble, architecture of MLPs (nuber of inputs and neurons in each 

layer) and size of the feature pool. The RSE-MLP can be compared to similar approach, where instead of 

MLPs, SVMs are used as classifiers (RSE-SVM). Furthermore, the experiment can be repeated several times 

(parameter 'num_iter') and the results can be avaraged. This step should eliminate the influence of 

random feature selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Parameters definition for example in demo2: 

% Define 7 classifiers in ensemble 

ens_size = 7; 

 

% Define lengths of the feature vectors, that are explored in the experiment 

num_in = [100 1000 10000]; 

 

% Define 5 neurons for each MLP in ensemble 

num_neur = 5; 

 

% Set size of the features pool to 20000 (the random subspaces of features 

% are chosen from this feature pool) 

FP_size = 20000; 

 

% Define 3 MLPs to train them on the same subspace of features 

% (these MLPs are used to vote for the class of the testing subject to 

% reduce the influence of the random initialization of the neuron weights) 

ens_size_wei_init = 3; 

 

% Set number of repetitions of the experiment 

num_iter = 2; 

 

% Comparison with SVM is required 

svm_comp = 1; 

The RSE-MLP scheme is then applied on the example data set and the matrices with results are returned 

after all iteration of leave-one-out cross-validation and repetitions of experiment are done: 

Loop for the robustness of the results - iteration: 1/2 

LOO - iteration: 1/20 

… 

LOO - iteration: 20/20 

Loop for the robustness of the results - iteration: 2/2 

LOO - iteration: 1/20 

… 

LOO - iteration: 20/20 

3. Evaluate the Outcomes 

 In the third step, the performance measures (accuracy, sensitivity and specificity) are computed for all 

odd numbers of voting classifiers and input vectors' lenghts. Furthermore, all posible (but not more than 

10000) combinations of particular number of classifiers out of all classifiers in ensemble are used to vote 

and the results are avaraged. The results are avaraged also over repetitions of the experiment. 

 

 

 

 



4. Plot Figures with Performance Measures 

The graphs for this classification scheme are drawn in the last step. 
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2. Sensitivity 

 

 

3. Specificity 

 


