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Welcome word 

Dear students and colleagues, 

we are pleased to welcome you to the 10th year of the Summer School on Computational Biology, 
which is expected to encourage the collaboration among professors, young scientists, and students of 
computational biology and related study programmes. 

Institute of Biostatistics and Analyses at Masaryk University (IBA MU) initiated the yearly tradition of 
summer schools focused on various aspects of computational science in biology and biomedicine in 
2005 and since then the participants have been educated and trained in various fields and topics: 
 

2005 Computational Biology 
2006 Predictive Modelling and ICT in Environmental Epidemiology 
2007 Processing and Analysis of Biodiversity Data: from Genomic Diversity to Ecosystem 

Structure 
2008 Statistical Methods for Genetic and Molecular Data 
2009 Analysis of Clinical and Biomedical Data in an Interdisciplinary Approach 
2010 Deterministic and Stochastic Modelling in Biology and Medicine 
2011 Biodiversity: from genetics to geography, from mathematics to management 
2012 From analysis of genomic data to clinical applications – case studies 
2013 Stochastic Modelling in Epidemiology 
2014 Image Data Analysis and Processing in Neuroscience 

The Summer School on Computational Biology celebrates its 10th anniversary this year and its title is 
Image Data Analysis and Processing in Neuroscience. Besides the standard teaching sessions, the 
summer school programme also includes several computer practice sessions and motivating lectures. 
The Summer School 2014 has an extraordinary panel of nine lecturers. Besides the teachers from IBA 
MU, it features two well-recognized foreign scientists: (i) Giovanni Montana, Ph.D. – Professor of 
Biostatistics and Bioinformatics at King's College London, and Visiting Professor of Statistics at 
Imperial College London (UK); (ii) René Mandl, Ph.D. – Assistant Professor at University Medical 
Center in Utrecht (Netherlands) with his expertise in diffusion weighted imaging, structural MRI, 
functional MRI, MR spectroscopy and the development of new analysis methods. The panel further 
involves Jan Kybic, Ph.D. – Associate Professor and head of Department of Cybernetics of Faculty of 
Electrical Engineering of Czech Technical University (Prague) – and four representatives of the  
neuroimaging community in Brno: Tomáš Kašpárek, Ph.D. (Head of Psychiatry Department – Faculty 
of Medicine and Brno , Ph.D. (Institute of Scientific Instruments of 

Neurosurgery Department at St. Anne's University Hospital).     

Students’ active contributions will make a substantial part of the programme. Student competition at 
the 10th Summer School of Computational Biology is again under the auspices of Assoc. Prof. Ladislav 
Dusek, the IBA MU's Director, who announced a reward for the best contributions in three categories 
for the students of bachelor, master and Ph.D. programmes. 

We thank all participating lecturers and all authors of the conference proceedings contributions. This 
Summer School on Computational Biology would not have been possible without the great 
administrative support from Mrs. Simona Schneiderová – we would like to express sincere thanks. 

related projects at IBA MU since 2009, and is the founder and 
guarantor of the Computational Biology study programme at MU.  

We believe that this year event will continue in inspiring our teaching and learning activities.  

On behalf of the organizers 

Daniel Schwarz & Eva Janoušová 
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Lectures

Image Data Analysis and
Processing in Neuroscience





Significance of the image analysis in contemporary psychiatry 

Tomáš Kašpárek1,2 
1 Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk 

University, Brno; e-mail: tkasparek@fnbrno.cz 
2 Behavioral and Social Neuroscience group, CEITEC-MU, Masaryk University, Brno 

Abstract 

The paper demonstrates the principles that enable the use of imaging methods in the 
field of cognitive or mental functions and disorders and the use of neuroimaging in 
clinical practice. The limitations of the approach are discussed with the critical issue of 
the knowledge of the biological process behind the changes seen in images that enables 
their correct interpretation. Besides a number of shortcomings neuroimaging brings 
significant information that enable deeper insight into the pathogenesis of mental 
disorders and that, hopefully, will enable objective diagnostics and treatment 
monitoring in the near future.  

Key words  
quantitative analysis, neuropathology, brain morphometry 

1. Introduction 
In one issue of his famous novel Foundation Isaak Asimov builds a story around a 
revolutionary technique of EEG data analysis that enables exploration of personality traits 
and even prediction of subject behaviour in future critical situations. The idea reflects the 
richness, stability and subject specificity of an electroencephalographic record that we are 
not able to decode at present. The question is if we can use them for the diagnostic purposes 
somehow. Another fiction writer and thinker Stanislav Lem dreamt about a tool that can 
record human memory traces and image them in an audiovisual modality as a movie. The 
second question that is reflected in his novel is if we can get access to the subjective inner 
content of mind, if we can devise tools for mindreading. So let us explore these questions 
from the point of view of clinical psychiatry. 

Modern high-resolution technologies, capable of imaging the structure as well as the function 
of the CNS, have been used for more than 20 years. They have brought considerable progress 
in neurosciences and related fields. From the perspective of a clinical psychiatrist, the 
extensive research in the field of imaging methods seems to have brought virtually no 
relevant information to practice (except for differential diagnoses of symptomatic mental 
disorders). Mental disorders have not been shown to have a correlate detectable with 
common methods used in other branches of clinical medicine. Nevertheless, imaging studies 
have enabled psychiatry to make remarkable progress in understanding mental illnesses. 

A great deal of misunderstanding concerning the significance of imaging methods in 
psychiatry stems from inadequate differentiation between qualitative and quantitative 
assessment of images. In clinical practice we use “qualitative” assessments, i.e. we look for 
qualitatively different characteristics in the image that have pathognomonic significance, for 
instance a shadow on a lung X-ray or the occurrence of specific epileptiform grapho-
elements in an EEG. Unfortunately, such specific, pathognomonic qualitative changes are 
not found in mental disorders.  
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Quantitative assessment, on the contrary, is based on statistical analysis of the parameters of 
the image used to detect changes and relationships not perceptible by the naked eye; for 
example bone densitometry used to detect places in the image of the skeleton in which the 
2.5 standard deviation intensity is below the population standard. Quantitative assessment 
can allows us to test specific hypotheses, i.e., using imaging we can ask and answer clinically 
relevant psychiatric questions. 

We need to realize at what level of abstraction imaging methods work. Any 
psychopathological process manifests itself at numerous levels, from genetic content, 
expression of genes and their regulation by epigenetic mechanisms, structure and function of 
proteins, subcellular structures and mechanisms, cells and cellular interactions, 
neurophysiological systems, mental functions, personality and partnership, to the 
individual’s social environment. A primary pathology can develop at any of these levels. 
Through feedback mechanisms, adaptations and maladaptations then occur at the next levels, 
and, with regard to circular causality (effect influences causes and these changes in turn lead 
to changes in the effects) making it difficult to identify the cause and the effect of the 
adaptation. Therefore, the relationships between individual levels are sometimes very 
difficult to establish; nevertheless, the important fact remains that mental disorders can be 
understood as changes at many levels of abstraction and that it is possible to try to make use 
of this information in clinical practice, from diagnosis to therapy. The methods of biological 
psychiatry can capture changes from the genome to the level of neurophysiological systems 
(imaging methods). In this respect, it is evident that imaging methods cannot constitute a 
single, universal approach that can fully explain all psychopathological phenomena. On the 
contrary, only by integrating information gained from different levels can the findings of 
imaging methods be understood in the context of the complex pathophysiology of a disorder 
and be correctly interpreted. 

2. Lessons from the schizophrenia research 
In 1976, the first CT study involving schizophrenia that demonstrated the presence of 
enlarged lateral ventricles of the brain was published. This was a ground-breaking study and 
ever since schizophrenia has been regarded as an illness of the brain with a morphological 
and neuropathological correlate, and is not the functional illness it was once thought to be. 
These types of studies revived the interest in the neuropathology of schizophrenia, which, 
until that time, had been considered the “graveyard” of neuropathologists. 

The key neuropathological change seems to be reduction in the thickness of the cortex, 
primarily of layers II and III. At the same time, a higher density of neurons, smaller sized 
pyramidal neuron cell bodies and a reduction in the dendritic tree size of these neurons, can 
be found in these layers. The pyramidal neurons of layers II and III integrate and transmit 
cortico-cortical connections.  

It is possible to assess the thickness of the cortex using magnetic resonance - grey matter 
density and cortex thickness reflect similar parameters of brain morphology in schizophrenia. 
Thus, in schizophrenia, using voxel-based morphometry (VBM), we can assess the bulk of 
the neuropil, i.e., connectivity rate. This means that VBM can be used for assessing the 
neuropathology of schizophrenia in vivo. In different words – in schizophrenia we can 
interpret the reduction of gray matter volume in the image of VBM as loss of neuropil on 
pyramidal cortical neurons.  
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Unfortunately, until today we cannot use brain morphometry as a proxy measure of treatment 
outcome. Although there are many reports on the effect of treatment on brain morphology, 
the animal and human post-mortem studies show that antipsychotics induce changes that in 
other cortical layers than are those affected by the disease process. The changes seen in brain 
imaging do not reflect recovery of the pathological process. 

Besides the above mentioned, the findings of brain dissimilarities in schizophrenia, 
ascertained using VBM, have major and direct significance for day-to-day clinical practice: it 
is exactly because the findings underlie the level of subjective experience that it is possible 
(or rather, let us hope it soon will be) to communicate more easily with the patient about 
their illness. On a daily basis, at outpatient clinics and in hospital wards, we meet patients 
who do not accept the fact that they are mentally ill, or, to put it differently, do not regard the 
proofs of their illness, as acquired by our subjective assessment of their experience, thinking 
and behavior, as correct or meaningful. The ability, or even the possibility, of assessing the 
unique features of an individual’s psyche is questioned. If we could tell the patients that the 
diagnosis is supported by dissimilarity in the morphology or function of their brain, existing 
parallel to our subjective assessment, it might perhaps be easier to work with their 
anosognosia. 

Imaging studies assess a group of subjects. However, the information value, as regards a 
single patient, is problematic. The reason is the heterogeneity of the groups of subjects as 
well as the statistical power of the tests. These difficulties in the assessment of individuals 
lead to a significant gap between what happens in the laboratory and clinical practice. 

This distance can be overcome using modern techniques of analysis and classification of 
patterns (pattern recognition, detection) and mathematical techniques searching for typical 
features of the studied group/individual. Then by looking for these features in individual 
subjects it may be possible to classify them according to their presence/absence (one of the 
known applications is, for instance, recognition and identification of faces, recognition of 
fingerprints, etc.). These techniques can also be applied to brain images – in this way it is 
possible to try to recognize functions that the brain performed during the examination, but 
there is also the potential to classify subjects as patients or healthy individuals, etc. If we 
succeeded in verifying the applicability of such methods, it could bring imaging methods 
closer to clinical practice in psychiatry (diagnosis, prognosis, etc). On the basis of brain 
imaging, this would become possible. Existing experience has so far been encouraging. 

3. Conclusion 
Imaging methods enable us to study the neurobiology of mental disorders – they have 
actually shown that mental disorders do have a neurobiology, that they are not only 
functional or psychogenic conditions. Imaging methods also contribute to the theoretical 
understanding of mental disease with cognitive neuroscience allowing us to gain insight into 
the mechanisms of symptom development. Imaging techniques, with the help of animal and 
histopathological studies, and in the context of clinical diagnosis, allow assessment of the 
neuropathology as well as the effect of treatment. Imaging methods may enable subject 
classification, recognize defined pathological conditions, which might be useful for diagnosis 
and differential diagnosis; such advancements would improve the relevance of imaging 
methods to clinical practice. Additionally, imaging methods contribute to the understanding 
of the mechanism of action of psychotropic medication and allow us to search for the targets 
of biological treatment. They do not, however, enable access to the contents of the “psyche”, 
i.e. we are not able to find out WHAT the person perceives, WHAT they are thinking about 
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and WHAT they remember. The findings of imaging methods do show changes at a level 
below that of subjective experience, which are accessible through introspection or mediated 
through interviews. The relationships between the findings of imaging methods and the 
subjective level can be estimated only from information gained using parallel methods, 
“indirectly”, and they are, to a varying extent, speculative. Notwithstanding, imaging 
methods, in the hands of a psychiatrist, represent an invaluable tool for studying mental 
disorders, with numerous clinical overlaps. 
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Image registration and its role 
in computational neuroanatomy 

Daniel Schwarz 

Institute of Biostatistics and Analyses, Masaryk University, Brno; 
e-mail: schwarz@iba.muni.cz 

Abstract 
This part of the proceedings is focused on the field of image registration with the use of 
various spatial transformations. Image registration is introduced here as a general 
problem which can be broken down into several components: spatial transformation, 
similarity measure, interpolation and optimization. Image registration plays a crucial 
role in algorithms for automated whole-brain morphometry, such as voxel-based 
morphometry, deformation-based morphometry or source-based morphometry. Basics 
of these methods as well as their use-cases are explained here. 

Key words  

Image analysis and processing, image registration, spatial transformation, similarity 
measure, interpolation, optimization, brain morphometry, voxel-based morphometry, 
deformation-based morphometry, source-based morphometry. 

1. Image registration 
Image registration is a process of estimating a spatial transformation which maps each point 
of an image onto its physically corresponding point of another image (Rohr, 2000). One of 
its main application fields is biomedical imaging, where the major challenges include finding 
correspondences between image data from different sensors (multimodal images) and from 
image databases (e.g. digital atlases). The spectrum of geometric differences between images 
is very broad including nonlinear image distortions caused by different modalities, time-
varying processes or anatomical variability among different subjects (Schwarz, 2005).A 
universal method does not exist due to the diversity of registration tasks. Various approaches 
to the classification of image registration methods might be found in general surveys, such as 
(Maintz and Viergever, 1998; Rohr, 2000; Zitová and Flusser, 2003) or in the review of 
registration approaches applied to the field of computational neuroanatomy (Gholipour et al., 
2007). Selected criteria from (Maintz and Viergever, 1998) to particularly classify methods 
for intrinsic1 spatial registration without temporal variability and without any user interaction 
are shown in Table 1.  

Segmentation-based methods require feature detection and feature matching. First, salient 
objects are extracted and then their correspondence in a subject and a reference images are 
established. Anatomical salient objects such as posterior and anterior commissures 
(Talairach, 1988) or hippocampus boundary (Shen et al., 2002) are used less commonly than 
geometrical salient objects – e.g., skin surface (Pelizzari et al., 1989) – because user 
supervision is often needed for anatomical landmarks identification. The main drawback of 

                                                           
1 Intrinsic registration methods are image-based, whereas extrinsic methods rely on foreign 
objects introduced into the imaged scene. 
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the segmentation-based methods is the dependence of the registration accuracy on the 
achieved segmentation precision. Although they are used with medical images very often, 
their main fields of application are computer vision and remote sensing, where the structural 
information contained in images is much more apparent than in medical imaging 
applications. The main advantage of these methods is a sparse set of identified points when 
compared to the original image content, which makes for relatively fast optimization 
procedures. 

Table 1. Classification of image registration approaches (Schwarz, 2005) 

Voxel-based methods operate directly on image gray values with no data reduction by 
segmentation. Coarse preregistration is done by aligning centers of gravity, taking the image 
intensity as a mass density in (Collins et al., 1994; Ibáñez and Insight Software Consortium, 
2003). In addition, alignment of principal orientations computed from image moments is 
done in (Ding et al., 2001). Methods using full image content are considered in this work 
mainly. The spatial correspondence between the reference and the object image is evaluated 
by a similarity measure. Choice of the similarity measure depends mostly on characters of 
intensities in the reference and the subject image or, in other words, it depends on 
monomodality or multimodality of data coming into registration. While absolute or squared 
difference is a suitable measure of similarity for monomodal data, it cannot be used on 
multimodal registration. Intensity difference is used to drive registration most often in 
warping methods based on continuum mechanics (Bro-Nielsen and Gramkow, 1996; 
Christensen et al., 1996; Ferrant et al., 1999; Tang and Jiang, 2004), optical flow (Hata et al., 
2000) or diffusion (Thirion, 1998, 1996). Cross correlation is used when a linear relation 
between reference and subject image intensities is expected, such as in (Collins et al., 1995, 
1994). Fourier-based registration techniques proved to be suitable when images corrupted by 
frequency dependent noise have to be registered (Hoge et al., 2003). Mutual information-
based methods (Capek et al., 2001; Ibáñez and Insight Software Consortium, 2003; Kubecka 
and Jan, 2004; Maes, 1998; Maes et al., 1997; Maintz et al., 1998; Pluim et al., 2001; 
Schwarz and Provazník, 2002a, 2002b; Unser and Thevenaz, 2000; Viola and Wells, 1995) 
represent a leading technique in multimodal registration. It measures statistical dependency 
between two datasets; details are given further in the text. The multimodal similarity 
measures can be avoided by applying an intensity transformation on one of the images, so 
that it matches the intensity properties of the other image. The reason for that is in the 
following possible use of an already settled monomodal registration algorithm (Ashburner 
and Friston, 1999; Guimond et al., 2001; Ibáñez and Insight Software Consortium, 2003).  

Various transformation types are used for various registration tasks. Rigid body and affine 
transformations are linear mappings used mostly. A rigid body transformation consists of 
translations and rotations only. It can be described by six parameters in 3D coordinate system 
(three parameters for translations and three parameters for rotations). If the voxel size differs 
in the subject image and the reference image, one or three additional parameters for uniform 

Registration 
basis 

Nature of 
transformation 

Domain of 
transformation Optimization  Modalities 

involved Subject 

segmentation 
based linear global parameters 

computed mono-modal intra-
subject 

voxel  
based nonlinear local parameters 

searched for 
multi- 
modal 

inter-
subject 
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or non-uniform scaling are involved. Thus, a seven-parameter or a nine-parameter affine 
transformation is composed. If shearing has to be covered, twelve parameters for an affine 
transformation have to be found. Linear transformations are used for global mappings, which 
get the subject image into the coordinate system of the reference image. The subject image 
can be aligned with a template image of an anatomical atlas (Collins et al., 1994) or patient 
repositioning can be corrected in this way (Rohlfing et al., 2003; Rueckert et al., 1999).  

Nonlinear transformations are often referred as non-rigid. They are described by far more 
parameters (degrees of freedom) than the linear ones. They are based on polynomials 
(Woods et al., 1999), various basis functions such as cosine basis functions (Ashburner and 
Friston, 1999), radial basis functions (RBF) (Buzug et al., 1997; Fornefett et al., 2001), B-
splines (Xie and Farin, 2001) or a physical model such as an elastic model (Ferrant et al., 
2001, 1999) or a fluid model (Bro-Nielsen and Gramkow, 1996; Christensen et al., 1996). 
Nonlinear transformations are used when misalignments remaining after a linear 
transformation have to be suppressed. The misalignments are caused among others by 
anatomical variability between various subjects, by different geometrical distortions 
introduced during acquisition process from various modalities, by a deformation caused by 
introducing foreign objects into the scene or by tissue changes or a motion. Nonlinear 
transformations are referred as deformations further in this work. They are computed from 
local forces estimated with the use of a similarity measure.  

Global transformations are applied to the entire image, whereas local transformations are 
applied to subsections of the image, which can be blocks of an arbitrary size, even individual 
voxels. Apparently, affine and rigid body transformations are used globally, whereas 
deformations are used locally.  

Parameters which make up the spatial transformation are computed or searched for. Direct 
computation of a global transformation is usually based on a sparse set of corresponding 
points in the subject and the reference image. Thus, these methods are restricted to the use of 
segmentation-based methods. In the case of voxel-based methods, the parameters of a global 
transformation are searched for. A cost function formed by a similarity measure (or its 
negative) as a function of transformation parameters is formulated and its minimum is 
searched. This approach is referred as optimal registration (Modersitzki, 2004) and can be 
used also for local transformations computed on subsections of original images (Maintz et 
al., 1998; Schwarz and Provazník, 2002a, 2002b). Various optimization techniques with the 
use of derivatives, such as Marquardt–Levenberg method (Unser and Thevenaz, 2000) or 
Gauss–Newton method (Ashburner and Friston, 1999), as well as without derivatives, such 
as Powell's method (Maintz et al., 1998; Schwarz and Provazník, 2002a, 2002b), Nelder–
Mead's method (Collins et al., 1994) or the random search algorithms such as simulated 
annealing (Capek et al., 2001) or controlled random search (Kubecka and Jan, 2004) are used 
depending mainly on the behavior of the cost function. Multiresolution techniques are often 
employed (Capek et al., 2001; Ibáñez and Insight Software Consortium, 2003; Pluim et al., 
2001) to avoid local minima and to speed up convergence of the optimization. Local 
transformations can be besides optimization computed also directly e.g. by optical flow 
methods (Hata et al., 2000) or by registration methods based on diffusion (Thirion, 1998, 
1996).  

In monomodal applications, the images to be registered are acquired from the same modality, 
whereas multimodal registration methods process images from two different modalities. 
Registration of MRI data with different contrast weightings is regarded as multimodal in this 
work as the characters of intensities differ in the images obtained with various pulse 
sequences, see Figure 1a. A checkerboard composite of T1-weighted image of an individual 
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and a template image constructed as an average of 305 registered T1-weighted images of 
various subjects is in Figure 1b. The classification of such atlas based registration is not 
straightforward. Due to various characters of intensities in the images, this kind of 
registration is also regarded as multimodal in this work.  

a) b)

 

Figure 1. Checkerboard composite of registered images after a) multimodal intrasubject registration 
(MR-T1/MR-T2), b) multimodal intersubject registration (MR-T1/average of 305 individuals) 
(Schwarz, 2005). 

Registration is referred as intrasubject if image data acquired from a single patient have to be 
aligned. If image data of different patients come into registration, it is referred as intersubject 
registration. Atlas-based registration is accomplished with a patient image and an image of a 
“normal” subject or a template image constructed from a database of images of many 
subjects representing certain population. Hence, atlas based registration is considered as 
intersubject registration here. 

1.1. Components of registration methods 
Image registration can be defined as an optimization problem with the goal of finding the 
spatial mapping that will bring the floating image N into alignment with the reference image 
M. Figure 2 shows its basic steps. It is in fact a general framework of any registration where 
parameters of the spatial mapping cannot be computed directly.  
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Figure 2. Basic components of an optimal registration framework (Ibáñez and Insight Software 
Consortium, 2003). 

1.1.1. Transformations and spatial deformation models 

The spatial transformation a
-1 maps points from the reference image space to points in the 

floating image space. It is parameterized by a vector of parameters a. It is in fact an inverse 
mapping which is preferable as it avoids problems of holes with the forward mapping, see 
Figure 3.  

a) b)

?

pN

-1

original
image

transformed
image

 

Figure 3. a) Forward and b) inverse mapping. The intensity in the non-grid point pN is interpolated 
from surrounding voxels in the original image (Schwarz, 2005). 

Affine transformation in 3-D space can be described by a single 4 × 4 matrix A: 

 ,RGSTA  (1) 

where R, G, S, T are 4 × 4 matrices representing rotation, shearing, scaling, and translation 
respectively. The matrices are usually notated in homogeneous coordinates which allow 
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representing translation by a matrix and thus composing it with other transformations. A 
general affine transformation has 12 parameters: three translation shifts tx, ty, tz along x, y and 
z-axis; three angles of rotations x, y and z; three shearing parameters gx, gy, gz; and three 
scaling factors sx, sy, sz. By setting all three shearing parameters to gx  gy  gz  0 a reduced 
nine-parameter affine transform is obtained. By setting all three scaling parameters 
sx  sy  sz  k, where k represents an isotropic scaling factor, a reduced seven-parameter 
affine transformation, termed as a similarity transformation, is obtained. Setting k  1 yields 
a rigid body transformation composed only from translations and rotations. 

In many medical imaging applications, the global alignment provided by an affine 
transformation does not provide a sufficient solution. A spatially dependent deformation is 
then necessary to correct the local differences remaining in the images. The mapping 
function of a deformation (x) is usually split into the trivial identity part and a so-called 
displacement field u(x) (Modersitzki, 2004): 

 .xuxx  (2) 

Computation of the displacement field involves local forces together with regularization 
provided by a spatial deformation model. Regularized mapping function ensures realistic 
registration results without tearing or folding of the image. The spatial deformation model is 
more or less physically motivated, depending on the particular application (Schwarz, 2005). 

Parametric deformations are given in terms of basis functions i and corresponding 
parameters ai. Once the set of basis functions is chosen, the registration task is limited to 
determine the parameters of the deformation. Methods based on scattered data interpolation 
with the use of radial basis functions (RBFs) are used widely. Wendland’s functions and 
thin-plate splines are examples of RBFs used in image registration. In (Kostelec et al., 1998), 
local forces are represented by translation and rotation parameters obtained from several 
rigid monomodal registrations performed on 2-D image quadrants. The spatial deformation is 
modelled by interpolation of the local translation and rotation parameters with the use of 
thin-plate splines. Similarly in (Buzug et al., 1997), motion vector field between 2D images 
from digital subtraction angiography is obtained by locally optimizing histogram-based 
energy measure. Thin-plate splines are then used to interpolate the motion vector field to get 
the resulting mapping function which serves for correction of the motion artifact. Point 
landmarks are used in (Pauchard et al., 2004) to identify distortions caused by metallic 
implants in MR imaging. Ideal interpolation, and therefore an exact alignment of the point 
pairs, is not expected due to point localization errors. These are compensated by 
regularization factor which relaxes the interpolation condition in exchange for a smoother 
mapping function. Thin-plate splines are widely used for their physical interpretation based 
on minimum bending energy of a thin sheet of metal. Such a physical analogy makes their 
use conveniently intuitive. On the other hand, the bending energy is measured over the whole 
image, thus the resulting deformation is not limited to regions where the local forces act. 
This behavior is advantageous for yielding overall smooth deformations, but it is problematic 
when rather local deformations limited to image parts are desired (Fornefett et al., 2001). 
Figure 4 shows the difference between deformations computed with the thin-plate splines 
and Wendland’s functions. Other RBFs, such as inverse multiquadrics (Ruprecht and Müller, 
1993) or Wendland's functions with compact support (Wachowiak et al., 2004) are 
investigated for image deformations. In (Fornefett et al., 2001), Wendland's RBFs are 
proposed for image registration based on point landmarks. A significant reduction of global 
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influence together with high computational efficiency compared to other RBFs is reported 
there.  

a) b) c)

 

Figure 4. a) A synthetic image under six local forces. The displacement field is computed with the use 
of b) thin-plate splines, c) Wendland's functions with compact support (Schwarz, 2005).  

Other functions with compact support are cubic B-splines. They are used in (Rohlfing et al., 
2003; Rueckert et al., 1999; Schnabel et al., 2003) as basis functions for spatial deformation 
model in registration of breast images from contrast-enhanced MRI to recover a motion 
artifact. The local forces are represented by moving control points from their initial uniform 
grid spread over the whole images. Although the forces act locally, they are obtained by 
optimizing a cost function made up from a global similarity measure, which is normalized 
mutual information, and various penalty terms. One of them is a smoothness constraint given 
by minimizing the bending energy of a thin metal plate. Another one is an incompressibility 
constraint penalizing tissue compression and expansion which are indicated by local 
deviations of deformation's Jacobian determinant from unity. A trade-off between the 
deformation smoothness or volume preservation and the required reduction of motion artifact 
is discussed there. The unconstrained registration produces lower residual artifacts, whereas 
a lower number of getting stuck in local optima is reported in the case of the constrained 
registration. Another parametric deformable registration method based on constrained 
optimization is proposed in (Ashburner and Friston, 1999) for so-called spatial normalization 
– mapping brain images into a standard space. The nonlinear transformation is parameterized 
with low-frequency components of discrete cosine transform. The optimization involves 
minimizing the sum of squared differences between the images together with a constraint 
based on Bayesian statistics - a maximum a posteriori estimate of the mapping function 
parameters is searched. Knowledge about a priori parameter distributions is assumed to be 
known. The final remark to the state of art of parametric deformable registration belongs to a 
natural extension of the Fourier model: wavelet basis functions are investigated in (Downie 
and Silverman, 2001) for modeling the displacement field in the floating image without 
neglecting localized high-frequency features.  

Multilevel deformation for a block matching registration algorithm is proposed in (Schwarz 
and Provazník, 2006; Schwarz, 2005). Smooth deformations with the displacement field u(x) 
are computed by scattered data interpolation based on compactly supported Wendland’s 
RBFs:  
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where uk(x) is the displacement of a grid point x in the kth dimension, R is the radial basis 
function of the distance ||x wi|| between the grid point x and the center of the ith block wi. 
The coefficients i are computed by putting the displacements of the image blocks, found by 
regional similarity matching, on the left side of the equation  (3) and solving the resulting 
linear system of B equations separately for each dimension k. Mathematical properties of 
Wendland's RBFs hold for different spatial support which is important for the multilevel 
strategy. For each level of subdivision, the image block size is set to the half of the size at the 
previous level. The displacements are gradually incremented over all levels, refining the 
resulting deformation in the coarse-to-fine manner. The regions containing poor contour or 
surface information can be eliminated from the matching process and the algorithm can be 
accelerated in this way, see Figure 5. 

 

Figure 5. Illustration of five-level adaptive subdivision. The subdivision is performed only if at least 
one voxel in the current region has its normalized gradient image intensity bigger than a certain 
threshold (Schwarz and Provazník, 2006).  

The support length of Wendland’s RBFs cannot be set arbitrary, as there is a fundamental 
condition of topology preservation, i.e. one-to-one mappings termed as diffeomorphic 
(Modersitzki, 2004) are required. This requirement is satisfied if the determinant of the 
Jacobian of the deformation is non-negative : 

  ,0det  (4) 
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where 1, 2 and 3 are components of the deformation over x, y and z axes respectively. 
Figure 6 shows values of the determinant of the Jacobian estimated by symmetric finite 
differences. The image is undesirably folded in the positions, where the determinant of the 
Jacobian is negative. In such a case, the mapping is not invertible. 

-0.5 0 0.5 1 1.5 2 2.5

a) b) c)

d) e) f)

 

Figure 6. Deformations computed with the use of Wendland's RBFs with various degree of locality 
(support length) and the same magnitude of local forces (displacements). A stiffer material is modelled 
with a bigger value of the support parameter of Wendland’s RBFs: a), whereas a more flexible material 
is modelled by a smaller value in the support parameter: c). It is worth to note that this modelling is 
intuitive only, as there is no validation study that the deformations based on Wendland's RBFs are 
physically plausible. Preservation of topology is observed by the value of Jacobian determinant: d), e), 
f). (Schwarz, 2005)  

Instead of applying piecewise interpolation to compute a displacement field which maps the 
control points of one image onto another, non-parametric deformations define a displacement 
vector in every point most often by imitating real world transformations of deformable 
materials. The local forces, which drive the registration process, are counterbalanced by 
constraints defined by the spatial deformation model. The constraints are used to restrict the 
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transformation to an appropriate class depending on a particular application. Besides various 
smoothness constraints, stiffness constraints based on continuum mechanics are used 
typically (Schwarz, 2005). 

One of the first proposed methods based on continuum mechanics was elastic matching 
(Ferrant et al., 2001, 1999; Modersitzki, 2004). Only small deformations are assumed, thus 
linear elastic model can be used. Elastic matching is interesting method in the area of 
intrasubject registration and it is still used, mainly for biomechanical image registration 
(Alterovitz et al., 2004). Unfortunately, it fails in intersubject situations, where large and 
localized deformations are desired. In (Christensen et al., 1996), a viscous fluid model is 
used to control the deformation. The floating image is modelled as a thick fluid that flows 
out to match the reference image under the control of the local forces. Convolution filter 
methods for solving associated partial differential equations (PDE) are proposed in (Bro-
Nielsen and Gramkow, 1996; Gramkow et al., 1997). Various solvers of the PDE are 
discussed in (Wollny and Kruggel, 2002) with regard to the computational cost. A 
considerable piece of work is presented in , where 
Gaussian filters are used for modelling the spatial deformation. The Gaussian filters are used 
to approximate the elastic as well as the fluid model. It is also successfully used for a so-
called incremental model, which is used for image registration also in (Peckar et al., 1998). A 
spatial deformation model made up from the elastic and the incremental model is proposed, 
in order to combine their advantages and thus improve the registration. Its design follows the 
concept of solving partial differential equation associated with linearized elasticity or 
viscosity by convolution filtering, where the filter kernel equals the impulse response of the 
deformable media. The displacement is computed as a reaction of local forces exerted in an 
image: 
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see the scheme in Figure 7. The first part follows the Hooke’s law to compute unregularized 
displacements. It says that the points move proportionally to the applied forces f with a 
constant k. The second part of  (6) regularizes the displacements by convolution filters GI 
and GE which define spatial deformation properties of the modeled material. Gaussian kernel 
as a separable approximation to the elastic kernel is used here. Besides its  lower 
computational cost, the registration results obtained with the Gaussian kernel are reported in 

 to be more precise than the results obtained with the elastic 
kernel in the case when the forces driving the registration differ from the forces which in 
reality deformed the anatomy, such as in the case of intersubject registration. The separable 
Gaussian kernel does not provide control over compressibility, due to independence of 
spatial dimensions. While this property is disadvantageous in particular registration tasks, it 
is required in the case of intersubject registration. 

1.1.2. Similarity measures 

The choice of an appropriate similarity measure to be used in a registration algorithm is 
substantially determined by the character of intensities in the floating and the reference 
image. Popular choices, which are based on intensity, correlation and mutual information, 
are clearly derived and defined in (Ibáñez and Insight Software Consortium, 2003). 
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Figure 7. The combined elastic-incremental model . The first filter GI 
regularizes displacement improvements uf and the second filter GE regularizes the overall displacement 
field u. 

Intensity-based registration incorporates typically the so-called sum of squared differences 
(SSD), which relies on the assumption that intensity representing the same homologous point 
must be the same in both images. Hence, its use is restricted to images of the same modality. 
It can be used also for multimodal registration, if an intensity transform is applied on one of 
the images, in order to obtain the same character of intensities in both images.  

Voxel-wise cross-correlation normalized by the square root of the autocorrelation of the 
images is typically used in correlation-based registration. Unlike the SSD measure, it is 
insensitive to multiplicative factors between the images.  

Supposing the image intensities to be discrete random variables, their mutual information 
(MI) can be defined in terms of entropy known from information theory: 
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where I(M,N) is the mutual information of random variables M and N, H(M) and H(N) are 
entropies of M and N respectively and H(M,N) is the joint entropy of M and N. The entropy 
H(M) is known to be a measure of the amount of uncertainty about the random variable M. 
The entropies are defined in terms of marginal probability density functions (PDF) pM(m) 
and pN(n), and the joint PDF pMN(m,n) of the random variables. If M and N are independent, 
then their mutual information is zero. In the case of dependency between M and N, their 
mutual information has a positive value. The major advantage of using MI for measuring the 
strength of the dependence between random variables is the fact that the actual form of the 
dependency does not have to be specified. Therefore, MI is well suited as a criterion of 
multimodal registration.  

The marginal and joint PDFs can be estimated from image data by Parzen windowing, such 
as in (Modersitzki, 2004; Unser and Thevenaz, 2000; Viola and Wells, 1995) or by 
normalizing the joint histogram and summing over its rows and columns, such as in (Maes, 
1998; Maintz et al., 1998). Examples of the joint PDF estimates of misregistered as well as 
of registered MRI images are shown in Figure 8 – a general, undefined, but certain 
dependency between the intensities in the images can be observed. Higher peaks in “sharper” 
density of registered images correspond to true tissue pairs - intensity ranges representing the 
same tissue in both images. On the other hand, higher number of false tissue pairs in the case 
of misregistered images “smears out” the density function. The mutual information is larger 
in the registered than in the misregistered case. The similarity criterion is therefore defined 
by: 
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Figure 8. 2-D logarithmic plot of joint PDF pMN(m,n) estimates for T1-weighted and T2-weighted 
images in: a) misregistered position - translated and rotated, b) misregistered position - translated only, 
c) registered position. (Schwarz, 2005) 

The registration methods which were first to perform high-dimensional warping were 
typically limited to monomodal data, e.g. (Bro-Nielsen and Gramkow, 1996; Christensen et 
al., 1996; Thirion, 1998). The continuous efforts of medical imaging community to develop 
registration algorithms with high-dimensional matching of multimodal data have recently 
borne fruit.  

In (Rogelj et al., (2003), point similarity measures are proposed for high dimensional 
deformable registration of multimodal data. The point similarity measures are derived from 
global similarity measures based on the joint PDF estimated from the joint histogram, such 
as MI. The equation  (7) can be rewritten to: 
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The global mutual information is thus computed as an average of K point similarities SMI 
defined for each voxel x. The final summation is taken over spatial coordinates instead of 
intensities thanks to the fact that Km, n is the number of occurrences of the intensity pair 
[m, n] and K is the total number of intensity pairs, which equals to the number of overlapping 
voxels (Schwarz et al., 2007). The point similarity measure SMI(x) derived from the global 
mutual information is thus defined as (Rogelj et al., 2003): 
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In (Maintz et al., 1998), conditional probability densities are used for a region similarity 
measure and it is in (Schwarz et al., 2007) rewritten as another point similarity measure: 

 .xxx mnpSPC    (11) 

Other point similarity measures are proposed in (Rogelj et al., 2003) and further explored 
and evaluated in a high-dimensional deformable registration used for automated 
morphometry of MRI brain images (Schwarz et al., 2007): 
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These are measures expressed in terms of probability (SPC, SU) and uncertainty (SMI, SH, SUH). 
Experiments performed in (Schwarz et al., 2007), based on recovering synthetic 
deformations, showed better registration quality involving the probability similarity 
measures. Another point similarity measure dependent on probability is proposed there: 

 .,
xx

xxx
npmp

nmpS
NM

MN
PMI   (14) 

It is derived from SMI such that there is the same relationship between SPMI and SMI as in the 
case of SU and SUH. The log function, which may straighten out the differences between 
similarities of correctly and incorrectly registered tissues, is removed.  

Results of the measurement of similarity depend on the registration direction. The resulting 
deformations obtained from the direct registration of an image N to an image M and the 
registration in the opposite direction are not inverse to each other. It is caused by similarity 
measure's inability to uniquely describe the correspondences of regions or points. This 
asymmetric relation leads to registration inconsistency and reduces the quality of 
registration. Therefore, various consistent registration methods have been proposed. In 
(Schwarz et al., 2007), the local forces, which drive the registration process properly, are 
computed for each voxel independently as the differences between forward forces and 
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reverse forces, using the symmetric registration approach taken from  (Christensen and 
. The forces are estimated by the gradient of a 

point similarity measure. The derivatives are approximated by central differences, such that 
the kth component of a force at a voxel x is defined as: 
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where k is a voxel size component, see Figure 9. In the case of the forward forces, the 
displacement obtained in foregoing iterations u(x) moves the voxel x of the floating image N 
to match it with the voxel x+u(x) of the reference image M. In the case of the reverse forces, 
the voxels of the reference image M are displaced in the opposite direction. In this way, both 
force fields are computed on the regular grid, assuming the same coordinate space for the 
images M and N. The point similarity measure is evaluated in nongrid positions due to the 
displacement field applied on the image grids. Thus, interpolation from neighboring grid 
points has to be involved.  

 

Figure 9. Selected parts of the force fields: a) the forward forces deform the floating image N to match 
it with the reference image M, b) the reverse forces tend to improve matching of the image M 
according to the image N, c) the symmetric forces exerted on the image N. (Schwarz et al., 2007) 

1.1.3. Optimization techniques 

An optimization technique is needed to find the spatial transformation defined by a vector of 
transformation parameters a=[a1, ..., aD]. The number of parameters D ranges from six, for 
rigid body transformation, to twelve, for general affine transformation, or to thousands for 
high-dimensional deformations. Optimization methods with no gradient computation 
requirement are typical for correlation-based and mutual information based criterions. 
Powell's directions set method (Maintz et al., 1998; Pluim et al., 2001), downhill simplex 
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method (Collins et al., 1994) are selected  examples in the case of linear optimal registration, 
see Figure 10. Global optimization techniques, such as evolutionary algorithms and 
simulated annealing (Capek et al., 2001; Kubecka and Jan, 2004) are characterized by quite 
slow convergence rates and have been used only rarely in medical image registration 
(Gholipour et al., 2007) 

Most of the widely used optimization algorithms, including gradient descent, quasi-Newton 
and Levenberg-Marquardt require derivative calculation. Analytical expressions for the 
gradient of similarity measures have shown to be effective in speeding-up the calculation and 
achieving smoother and more robust optimization The gradient expressions for various 
similarity measures are derived based on a variational formulation in (Hermosillo et al., 
2002). 
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Figure 10. Trajectories of 2-D optimization performed by: a) Powell's direction set method, b) Nelder-
Mead's downhill simplex method. Two MRI images with different contrast weightings were put into 
registration based on MI. They were misregistered before by a translation in the x and y axis. The 
registration was initialized at a random point near the optimum. There were 3 iterations, i.e. 6 line 
minimizations requiring 190 calculations of the cost function for Powell's direction set method, 
whereas 31 iterations requiring 61 calculations of the cost function had to be done with Nelder-Mead's 
downhill simplex method, reaching the same convergence criterion as in the former case. Running of 
the line minimizations required by Powell's method are not included (Schwarz, 2005). 

A multiresolution approach to image registration is widely used to improve its speed and 
robustness. The basic idea is that the optimization routines are repeatedly initialized with 
parameters obtained by previous registration performed at a coarser scale. Besides increasing 
the speed of the whole registration process, this coarse-to-fine strategy improves robustness 
by eliminating local optima at coarser scales (Maes et al., 1999; Pluim et al., 2001; Unser 
and Thevenaz, 2000).  

Figure 11 – retrieved from (Schwarz et al., 2007) – shows that deformable registration based 
on the point similarity measures is less precise for large initial misalignments according to 
lower values of global similarity measure at the end of the registration process. It is caused 
by two types of error: (i) incorrect estimation of point similarity function from misaligned 
images leads to computation of forces which do not drive the registration properly; (ii) the 
complexity of brain images together with gradient-based computation of forces lead to 
suboptimal registration solutions. The influence of the second type of the error is reduced in 
(Schwarz et al., 2007) with the use of the multiresolution strategy. Registration is performed 
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in multiple resolutions on a prepared sequence of downsampled images. To generate these 
images, Gaussian smoothing and subsequent sub-sampling are performed. Registration starts 
at the coarsest resolution level and the resulting deformation initializes registration on the 
finer resolution level. Each change of resolution requires resampling of the displacement 
field obtained in the preceding level. The registration convergence with and without the 
multiresolution strategy is compared in Figure 12. 

 

Figure 11. The convergence of the registration for various degrees of initial image misalignment. The 
initial misalignment is expressed by the maximum displacement uinit

MAX and the root-mean-squared 
displacement uinit

RMS. The number of iterations i is the highest when the images are misaligned by the 
largest deformation and it is lowest in the case of registration of images which are closely aligned. 
(Schwarz et al., 2007) 

 

Figure 12. The convergence of the registration with the use of the three-level multiresolution scheme 
(solid line) and without the multiresolution scheme (dashed line). (Schwarz et al., 2007) 
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1.1.4. Interpolation 

Interpolation is used within each iteration of the registration algorithm, as the points are 
generally transformed into non-grid position, see Figure 3. Besides the overall computation 
time, the interpolation method influences also smoothness of the optimization search space 
and hence the registration accuracy.  

Higher-order interpolation methods with larger kernels, such as cubic B-splines, lead to 
smaller intensity errors in the interpolated image. It has been shown, however, that these 
interpolators do not always ensure also higher registration accuracy, especially in the case of 
MI-based registration (Tsao, 2003). The voxel intensities are binned to a finite number of the 
histogram entries before the similarity measure is calculated. Due to this rounding, much of 
the additional accuracy obtained by higher-order interpolation is lost. In addition, the 
interpolation error varies depending on the extent of grid alignment, causing spatial 
discontinuity of the similarity measure, termed as interpolation artifact. It is different from 
the conventional sense of the term, which refers to the effect of interpolation on image 
quality. Here, it refers to the effect of interpolation on the similarity measure (Tsao, 2003).  

To alleviate the problems associated with direct intensity interpolation methods, partial 
volume interpolation (PVI) was proposed in (Maes, 1998) for mutual information based 
registration. It was further extended to a scheme called generalized partial volume joint 
histogram estimation (GPVE) (Chen and Varshney, 2003) and used in multimodal 
registration with the use of low-dimensional deformations and regional similarity measures 
(Schwarz and Provazník, 2006) as well as with high-dimensional deformations and point 
similarity measures (Schwarz et al., 2007). 

2. Whole-brain automated morphometric methods 
Analysis of brain morphology using neuroimaging data is an important area of research in 
neuroscience. At first volumetric approaches based on manual delineation of regions of 
interest (ROI) were used, later followed by several computational approaches. These were 
designed to overcome limitations of volumetry that is labor intensive, i.e. limits the number 
of subjects in a study, requires a prior anatomical hypothesis for region selection, is prone to 
errors that arise from subjectivity of boundaries detection, i.e. limits reliability and inter-
center comparability of the results. The methods of computational neuroanatomy are widely 
used now; the data on their individual strengths and limitations from direct comparisons are, 
however, scarce (Schwarz and Kasparek, 2011).  

The first implementations of computational neuroanatomic approaches are methods for 
voxel- and deformation-based morphometry (Ashburner and Friston, 2000; Ashburner et al., 
1998), see Figure 13 for their basic diagrams. 
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Figure 13. Morphometry methods in computational neuroanatomy involve image registration to match 
subjects' anatomies with a standard atlas brain. This makes it possible to compare data across different 
subjects in a standard stereotaxic space. Brain images are aligned by linear transformations and the fit 
is further improved by subsequent deformable registration. The resulting deformations are used 
themselves in a following analysis or they are used to spatially normalize the images which are then 
entered into an analysis of regionally specific differences. (Schwarz, 2005) 

Voxel-based morphometry (VBM) is based on the assumption that after the removal of 
general shape differences during image registration, local misregistrations remain resulting in 
between-subject differences in local brain tissue content. Usually, the brain intensity image is 
segmented into different brain tissue compartments which are then analyzed separately. 
These local differences in tissue content are then explained by a disease effect. Besides tissue 
segmentation and spatial normalization, VBM algorithms usually contain also a step referred 
to as modulation, in which normalized tissue maps are scaled by the macroscopic 
deformations to preserve local volumes. The VBM approach has been validated several times 
– corresponding findings are obtained using both VBM and ROI-based volume calculations 
(Giuliani et al., 2005; Gong et al., 2005; Keller et al., 2002), VBM is able to detect focal 
anatomical lesions (Mehta et al., 2003). However, the idea of VBM is also criticized for its 
proneness to errors and false positive results due to imprecise and possibly erroneous image 
registrations (Bookstein, 2001). For example, group differences of cingulate gyrus observed 
with VBM are not detected using ROI-based volumetry in (Corbo et al., 2005), where false 
positive findings, which resulted from cingulate gyrus shape differences, are reported. 
Experimental validation of the modulation step is provided in (Radua et al., 2014) –  the 
effects of modulation on the efficacy to detect cortical thinning are assessed. Surprisingly, 
the modulation step in the VBM pipeline is shown to be associated to a decrease of the 
sensitivity to detect abnormalities. Findings from this study suggest the use of unmodulated 
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VBM to detect mesoscopic (i.e. between microscopic and macroscopic) abnormalities such 
as cortical thinning. 

The magnitude of voxel size changes during the registration process is encoded in the 
relevant deformations or displacement fields. Their analysis is the core principle of 
deformation-based morphometry (DBM). It is able to detect changes in brain shape and 
volume irrespective of the brain compartment in which they occur, in contrast to VBM. The 
term “deformation-based morphometry” is used for the first time by (Ashburner et al., 1998) 
to describe a method for detecting global shape changes among the brains of different 
populations. In general, DBM approaches differ in the registration method used, mainly in 
terms of the spatial deformation model. In the initial works (Ashburner and Friston, 2000; 
Ashburner et al., 1998), smooth parametric transforms with low-frequency sine basis 
functions are used. Therefore it is not possible to encode all anatomical variability, including 
subtle differences, into the spatial transforms (“low-resolution DBM”). A complex 
description of brain morphology has been possible since methods for high-resolution 
deformable registration were introduced (“high-resolution DBM”). These methods include 
spatial deformation models based on high-dimensional parametric transforms (Xie and Farin, 
2001) or models inspired by similarity to continuum mechanics (Csernansky et al., 2002). 
DBM approach is also compared to traditional ROI-based volume calculations and yields 
corresponding results (Gaser et al., 2001).  

There are several ways of statistical analysis of deformations, among them a univariate 
analysis applied to Jacobian determinants, which represent the factors by which the 
deformation expands or shrinks volumes at the respective voxels. The analysis of Jacobian 
determinants allows for the detection of local volume changes in the brain. In short, DBM 
analyzes how much the volume of voxels changed during subject image registration to the 
template image, in contrast to VBM which focuses on the residual image variability after its 
transformation. The finer the image transformation, the higher resolution of the deformation 
field, the more anatomical information is encoded in the deformation field, and the smaller 
the residual differences in tissue content. The high-resolution DBM could, therefore, encode 
local anatomical changes; moreover, it focuses on changes in spatial arrangement of images, 
not on the residual misregistrations, and, therefore, high-resolution DBM could overcome 
VBM limitations. 

The application of high-resolution DBM in (Schwarz et al., 2007) is developed with the 
deformable registration method based on multimodal point similarity measures and the 
spatial deformation model allowing for large deformations while preserving the topology of 
the images, see chapter 2.1. It is able to register brain images with submillimeter precision on 
synthetic deformations. Such precision can provide high spatial resolution to detect local 
changes of brain morphology, not only overall changes of brain shape. Indeed, indirect 
comparison of results obtained using VBM2 and the high-resolution DBM method shows 
that DBM is able to detect changes in first-episode schizophrenia (Schwarz et al., 2007) that 
are analogous to those detected with VBM in (Kasparek et al., 2007). That is, high-resolution 
DBM can detect changes on the similar spatial scale that VBM can.  

The utility of mass-univariate approaches is questioned in the literature – the issues of 
sensitivity or the ability to correctly characterize inherently multivariate brain morphology 

                                                           
2 VBM implemented in Statistical Parametric Mapping (SPM) framework:  
(http://www.fil.ion.ucl.ac.uk/spm/). 
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are raised in (Davatzikos, 2004; Friston and Ashburner, 2004) and it is proposed that 
multivariate techniques may provide more valid information about brain morphology. 

  

Figure 14. Gray matter volume reduction in first-episode schizophrenia - SBM results. Overlay of the 
three significantly different components, where first-episode schizophrenia subjects have smaller gray 
matter volume. Each spatial component was reshaped to the matrix with the same dimension as that of 
the input images, normalized to unit variance and thresholded by Z = 3 to display only those voxels that 
are maximally linked with a particular component. (Kašpárek et al., 2009) 

Independent Component Analysis for morphological brain imaging data is used for the first 
time in (Xu et al., 2009), as a technique called ‘‘Source-based Morphometry’’ (SBM). In 
patients with chronic schizophrenia, the technique is more powerful than the VBM univariate 
approach in the identification of gray matter (GM) changes. The method is based on finding 
of independent patterns in GM images and consequent statistical analysis based on the 
comparison of the expression of the patterns in individual groups. Although SBM is also 
dealing with the groups of voxels, the nature of the method is quite different from the cluster-
level analysis in VBM. SBM groups voxels with similar pattern of variance – resulting in 
several “components”. Then, the magnitude of expression of individual components in every 
subject is given (component value) and the statistical analysis is performed based on the 
comparisons of component values for all components extracted. This approach leads to 
significant reduction of the severity of multiple comparisons correction, and, more 
importantly, uses information about the whole patterns of brain morphology, not only about 
individual voxels. In contrast, cluster-level VBM deals with spatially interconnected groups 
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of voxels that survived an arbitrary ‘‘cluster-defining’’ threshold. The significance value of 
individual voxels in VBM is dependent on the general linear model, therefore, it is noise-
dependent and high variability may lead to the failure of a voxel to reach significance. This is 
not the case of SBM, which is based on ICA that deals only with the structure of variance in 
the data. Taken together, multivariate techniques, such as SBM, may be superior to mass-
univariate methods using either voxel or cluster level of inference. The improved 
performance of SBM over mass-univariate voxel-wise analysis of GM volume is replicated 
in (Kašpárek et al., 2009) with a dataset containing first-episode schizophrenia patients and 
healthy controls. The authors detect gray matter reduction in the medial prefrontal, 
neocortical temporal and cerebellar areas using SBM, see Figure 14, whereas no changes are 
detected with the use of VBM. Thus, SBM is reported as a suitable method for 
characterization of the patterns of change at the beginning of the illness in schizophrenia 
subjects.  

2.1. Quantitative comparison of DBM and VBM 
The aim of the simulation study (Schwarz and Kasparek, 2011) was direct comparison of 
high-resolution DBM with widely used VBM analysis. Two sets of spatial deformations 
were generated: (i) simulations of normal anatomical variability and (ii) simulations of local 
volume changes at particular stereotactic coordinates. The nonlinear spatial transformations, 
which represent normal anatomical variability, were computed in the model by natural 
neighbor scattered data interpolation from random forces pointed in 294 locations in the 
volume delimitated by a binary head mask. Randomness of the simulator consisted in 
directions of the forces, magnitudes of the forces, locations of the forces and in leaving out a 
portion of the forces. A single subject MRI anatomical template from Simulated Brain 
Database3 was then warped using those deformations to generate 50 3-D MR brain images. 
In addition, 20 images contained three volume expansions of different extent in three exactly 
defined locations, together with the simulated normal anatomical variability. The extent and 
shape of the volume expansions in each image were randomized to simulate the variability of 
volume changes in pathological processes. Quantitative parameters of simulated expansions 
are given in Table 2. The other 30 images were generated with the use of deformations which 
contain only the simulated normal anatomical variability. Displacement vectors in all 50 
deformations reached maximum absolute values of about 5 mm. 

The simulation results reported in (Schwarz and Kasparek, 2011) showed superior 
performance of DBM that was able to detect all simulated local tissue expansions with very 
high precision – with the smallest simulated volume expansion at the scale of 600 mm3. 
VBM was not able to detect any of the three expansions - it was able to uncover tissue 
density change in near vicinity of the largest expansion – at the scale of 4000 mm3. This 
displacement, see Figure 15, was not affected by the amount of smoothing performed during 
VBM – similar displacement was found for both 6 and 12 mm FWHM Gaussian kernels. 
Moreover, one would rather expect large clusters that cover the simulated abnormality, 
together with many false positive voxels in the neighborhood, but not displacement of the 
results away from the simulation, if this shift is due to the smoothing of images. On the other 
hand, the smoothing is essential for VBM method, both conceptually and practically: it is 
necessary for intersubject comparisons; zero smoothing prevented detection of changes even 
at non-significant thresholds. 
                                                           
3 The data from the Simulated Brain Database (SBD) are used by the neuroimaging 
community to evaluate the performance of various image analysis methods: 
http://brainweb.bic.mni.mcgill.ca/brainweb/ 
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Table 2. Quantitative parameters of simulated expansions. Volume of the simulated expansions was 
computed from the results of the statistical analysis performed on simulated deformations. Due to the 
variability introduced into these deformations, different statistical thresholds defined by T, p and FDR 
provide different volume sizes (based on the power to detect certain effect size given the variability of 
the data). Exp1-3: Expansion 1-3; det(J): mean; max are the mean and maximal relative volume 
enlargement in significant voxels. (Schwarz and Kasparek, 2011) 

 

T < -4.8263  
(FDR 1%) 

T < -4.2414  
(FDR 5%) 

T < -3.5051  
(p<0.1%) 

[mm3] det(J): 
mean; max [mm3] det(J): 

mean; max [mm3] det(J): 
mean; max 

Exp1 3656 1.7202; 
8.3393 4339 1.6663; 

8.3393 5538 1.5282; 
8.3393 

Exp2 883 1.5767; 
8.0928 1028 1.5239; 

8.0928 1284 1.4557; 
8.0928 

Exp3 620 1.4227; 
7.6176 801 1.3672; 

7.6176 1192 1.2939; 
7.6176 

 

This displacement of the results obtained using VBM is of critical importance for the validity 
of evidence for neuroanatomical changes in neuropsychiatric disorders. For example, in 
schizophrenia research there is high variability of the spatial localization of gray matter 
changes reported in individual VBM studies (Honea et al., 2005), with relatively small 
overlap of the spatial maps (Ellison-Wright et al., 2008). Usually, this is interpreted in the 
light of neurobiological heterogeneity of the disorder. It seems likely that at least a part of 
this variability is due to the VBM imprecision. The power of VBM is another issue – even a 
study with large sample size (400 subjects) failed to find any changes in local gray matter 
volume in schizophrenia – due to large variability in the data (Meda et al., 2008). 

The simulated volume changes were not uniform in every subject. They differed in size and 
shape, which we think is more similar to real volume changes, where the pathological 
process affects every individual differently. Although DBM results overlapped very well 
with the simulated tissue changes, they tended to cover larger area of brain outside the 
simulation. This might be due to the smoothing effect during the registration step that was 
necessary in some cases to assure diffeomorphicity of resulting deformations. 
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Figure 15. Spatial relationship between the region of the largest simulated local volume expansion and 
the regions detected by VBM and DBM. Simulated expansion region (orange) and the regions detected 
using DBM (red) and VBM (blue).  

The poor performance of VBM, especially in the case of detection of subtle local changes, 
may be caused by the preprocessing steps: a substantial portion of variability is removed 
with nonlinear registration of the images to the template as well as with Gaussian smoothing 
of the binary tissue segments. In contrast, when using DBM, one tries to make all variability 
encoded in the deformation fields. Thus, no trade-off between removing variability with 
registration and detecting variability itself is necessary. 

Several advantages of DBM are reported in (Schwarz and Kasparek, 2011):  (i) the analyzed 
parameter (change of local volume) has a clear biological meaning. On the other hand, in 
VBM the meaning of tissue density multiplied by local volume change (determinant of 
Jacobian modulated tissue images), usually interpreted as “tissue volume” or “tissue density” 
is much less evident; (ii) the changes are always detected in the context of whole brain 
morphology described by high-resolution deformation fields; (iii) the localization of the 
changes is evident from their position within the brain. There is no risk of mirror changes or 
the question of what tissue is affected. Today, most VBM studies analyze only one tissue - 
usually gray matter (GM). However, when no information is provided about the 
corresponding changes in white matter (WM) and cerebrospinal fluid (CSF), it is not 
possible to draw clear conclusions; (iv) as suggested by the simulation, it seems that DBM 
could have higher spatial precision and higher sensitivity to detect subtle local volume 
changes. 
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Abstract 
Diffusion-weighted imaging (DWI) is a magnetic resonance imaging technique that 
allows us to non-invasively probe the microstructure of brain tissue. Using DWI we can 
obtain directional information of the fiber bundles in the brain that form the brain’s 
white matter. It is believed that these white matter fiber bundles are implicated in 
various neurological and psychiatric diseases and nowadays DWI is extensively used to 
study the human brain in vivo at different levels ranging from local (at a voxel level) 
microstructural properties of brain tissue to the level of complete networks (network 
analysis). In this lecture the basics of diffusion-weighted imaging will be presented as 
well as various applications and future directions. 

Key words  
Magnetic resonance imaging, diffusion-wighted human brain, fiber tracking, white 
matter, networks 

1. Introduction 
Complex brain functions do not reside in only one particular gray matter brain region but 
they rather emerge from the dynamic flow of information between different (spatially 
distinct) gray matter regions (Catani and Ffytche, 2005; Mesulam, 2005). These regions are 
interconnected over long distances by white matter fiber bundles (Figure 1a) forming large-
scale neural networks for which normal inter-regional communication is a prerequisite for 
proper functioning. Therefore these white matter fiber bundles are considered to be the 
information highways of the brain. These white matter fiber bundles consist of large numbers 
of axons running in parallel, each surrounded by a myelin sheath. An axon is the part of a 
neuron that transports the outgoing signals from the cell body to other neurons (see Figure 
1b). Myelin is a fatty insulating substance (responsible for the tissue’s white color) and the 
presence of the myelin sheath increases signal transport efficiency over the axon in terms of 
the energy needed as well as in speed. Magnetic resonance imaging (MRI) methods such as 
diffusion-weighted MRI (DWI) in combination with fiber tracking algorithms allow us to 
reconstruct these white matter fiber bundles and to study several aspects of these bundles in 
vivo. 

Diffusion-weighted magnetic resonance imaging (DWI) (Le Bihan and Breton, 1985; Le 
Bihan et al., 2001) has become a standard tool that allows us to probe the diffusion profile of 
water molecules at the level of voxels (volume elements). Diffusion (also known as 
Brownian motion) is the process of thermally driven displacement of the water molecules 
due to collisions with their surrounding molecules. From the diffusion profile of the water 
molecules we can infer characteristics of the microstructure of the underlying tissue that 
cannot be measured in a direct way. DWI has proven to be particular useful to study the 
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human brain’s white matter because in white matter the diffusion profile of the water 
molecules provides directional information of the underlying white matter fiber bundles 
(Chenevert et al., 1990; Doran et al., 1990). In white matter fiber bundles water molecules 
diffuse more easily in the direction parallel to the fiber bundle than in the perpendicular 
direction (Figure 2b). As a consequence the diffusion profile of the water molecules is 
anisotropic (i.e. not the same in each direction). Information about the shape of the diffusion 
profile can be obtained by measuring the level of diffusion in different directions (Basser, 
1995). 

 

Figure 1. a) A T1-weighted MRI scan of the human brain showing locations of gray matter (GM) and 
white matter (WM). b) The gray matter mostly consists of the soma of the neurons (b) while the white 
matter is formed by the myelinated axons. c) In the central nervous system, the insulating myelin 
sheath is created by a type of glial cells called oligodendrocytes. One oligodendrocyte may produce 
more than one myelin sheath segment serving several different axons. Water molecules are present in 
both the intracellular space (that is the space within the neurons and glial cells) and the extracellular 
space (ECS). 

 

Figure 2. a) The diffusion path of a single water molecule in case of unrestricted diffusion. The 
diffusion profile of all the water molecules combined will be isotropic as there are no structuring 
elements to shape the diffusion profile. b) The diffusion path of a single water molecule in white 
matter. The hindering of the diffusion of the water molecules by the axons results in an anisotropic 
diffusion profile, pointing in the direction of the fiber bundle. 

49



DWI “only” provides local information (in a voxel) on the directionality of the underlying 
white matter fiber bundle. This may be more than sufficient if, for example, one wants to 
compare groups (patients versus healthy persons) to search for focal aberrations. A popular 
method for this type of studies is tract-based spatial statistics (TBSS) (Smith et al., 2006), 
which utilizes so-called skeletons for white matter to perform a group comparison of 
diffusion profiles per skeleton voxel. 

For other types of analysis, however, it is necessary to reconstruct whole fiber bundles. 

Various fiber tracking algorithms exist that can be used to integrate this local directionality 
information to reconstruct whole white matter fiber bundles. Fiber tracking algorithms 
combine the directional information of the fiber bundles provided by DWI at voxel level in 
order to reconstruct entire white matter fiber tracts. One should bear in mind that with DWI 
information is obtained at the level of voxels (typically 2.0  2.0  2.0 mm), which contains 
millions of axons (with diameters ranging from 0.2 - (Kandel, 2000) and therefore 
only information of large fiber bundles and not of individual axons is obtained. 

Fiber tracking algorithms can roughly be divided into two classes, namely deterministic fiber 
tracking algorithms and probabilistic fiber tracking algorithms. The former provide the actual 
paths between regions (if they are connected) while the latter merely provide the probability 
for two given regions of being connected. See (Jones, 2008) for a discussion on the 
possibilities and limitations of both types of algorithms. 

Figure 3 shows an example of whole brain fiber tract reconstruction with the original (and 
still widely used) deterministic fiber assignment by continuous tracking (FACT) algorithm 
(Mori et al., 1999).  

One could define a starting region and an end region and then try to use deterministic fiber 
tracking to reconstruct fiber tracts between these regions. However, it turns out that (due to 
measurement noise inherent to DWI) a better way is to combine an exhaustive search 
approach with a number of selection regions of interest (ROIs). Here, first all possible tracts 
in the brain are reconstructed after which only those tracts are considered that actually 
penetrate the selection ROIs. Depending on its purpose, the selection ROIs can be defined in 
the deep white matter or in gray matter. The former is typically used if one wants to delineate 
one of the well-known large white matter bundles (for example the arcuate fasciculus, 
uncinate fasciculus or genu of the corpus callosum).  

The latter is often used in network analyses where automatically segmented gray matter 
regions are used as nodes to compute the connectivity matrix. Note however that using gray 
matter selection ROIs is more complicated because information on fiber directionality is 
typically low in the vicinity of gray matter. 

DWI is widely used to study various neurological and psychiatric diseases. For example in 
schizophrenia, where Bleuer – when defining schizophrenia more than a century ago – 
already hypothesized that the integration of information was implicated (Bleuler, 1911). 

Indeed, based on a large body of research a general picture emerges that the white matter is 
implicated in schizophrenia, predominantly the fiber bundles connecting the prefrontal and 
temporal brain regions (Shenton et al., 2010). However, linking these frequently reported 
disease-related differences in the diffusion profile to mechanisms responsible for the disease 
is not straightforward because various different tissue characteristics (e.g. axonal diameter, 
axonal density, level of myelination) influence the size and shape of the diffusion profile 
(Norris, 2001; Beaulieu, 2002). 
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Figure 3. Fiber tracking example using the deterministic FACT algorithm. a) Region for which the 
diffusion profiles – here modeled with tensors -- are shown in b). The tensors in white matter point in 
the direction of the fiber bundle (in this case the splenium of the corpus callosum). c) Using the 
directional information from the tensors b) the tracts from the splenium of the corpus callosum were 
reconstructed. 

 

Figure 4: Left: Example of exhaustive search (transverse view). The algorithm starts to tracing in each 
white matter voxel in the white matter of the brain. Here the reconstructed fibers are color-coded based 
on their general direction (red: left-right, green: posterior-anterior, blue: inferior-superior). Note that 
because diffusion is symmetric no distinction can be made between for instance left-to-right and right-
to-left. Right: example of usage of selection ROIs to select the left uncinate fasciculus. 

a) shows again all reconstructed fibers (sagittal view). Two selection ROIs are shown in red 
in b) to select the all the reconstructed fiber tracts that penetrate both ROIs. Together these 
selected tracts form the reconstructed left uncinate fasciculus. 

Although DWI provides us with unique directional information on the microstructure of 
brain tissue it cannot be used to extract information from the different tissue compartments 
(e.g. intracellular, extracellular space). The main reason is that with conventional DWI the 
diffusion of water molecules is measured and water is present in all tissue compartments. An 
interesting technique – especially using ultra high field MRI (Ronen et al., 2013) – that can 
be used to differentiate between the different compartments  is diffusion-weighted 
spectroscopy (DWS). With DWS the diffusion profile of different metabolites (instead of 
water molecules) is measured. In contrast to water, different metabolites are confined to 
different tissue compartments. Thus, DWS can help us, for example, to determine if 
differences in the microstructure frequently reported in schizophrenia (measured with 
conventional DWI) reflect differences in the intracellular and/or extracellular compartment. 
Such information is crucial to better understand the etiology of the disease. 
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In sum, diffusion weighted imaging, together with fiber tracking and network analysis, 
proved itself as an indispensable technique in today’s neuroscience that provides us with a 
unique view on the brain’s white matter fiber tracts. Moreover, it is a research field in full 
motion where new exiting techniques are developed that will help us to better understand the 
structure and functioning of the human brain. 

References 
Basser PJ. 1995. Inferring microstructural features and the physiological state of tissues from diffusion-

weighted images. NMR in Biomedicine 8(7-8): 333-344. 

Beaulieu C. 2002. The basis of anisotropic water diffusion in the nervous system – a technical review. 
NMR in Biomedicine 15(7-8): 435-455. 

Bleuler E. Dementia Praecox or the Group of Schizophrenias. NewYork: International Universities 
Press, 1911. 

Catani M, Ffytche DH. 2005. The rises and falls of disconnection syndromes. Brain 128(Pt 10):2224-
2239. 

Chenevert TL, Brunberg JA, Pipe JG. 1990. Anisotropic diffusion in human white matter: 
demonstration with MR techniques in vivo. Radiology 177(2): 401-405. 

Doran M, Hajnal JV, Van Bruggen N, King MD, Young IR, Bydder GM. 1990. Normal and abnormal 
white matter tracts shown by MR imaging using directional diffusion weighted sequences. Journal 
of Computer Assisted Tomography 14(6): 865-873. 

Jones DK. 2008. Studying connections in the living human brain with diffusion MRI. Cortex 44(8): 
936-952. 

Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science New York: McGraw-Hill, 2000. 
ISBN 0-8385-7701-6. 

Le Bihan D, Breton E.  Imagerie de diffusion in vivo par résonance magnétique nucléaire. Compte 
Rendus de l`Académie de Sciences Paris 301: 1109-1112. 

Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. 2001. Diffusion tensor 
imaging: concepts and applications. Journal of Magnetic Resonance Imaging 13(4): 534-546. 

Mesulam M. 2005. Imaging connectivity in the human cerebral cortex: the next frontier? Annals of 
Neurology 57(1): 5-7. 

Mori S, Crain BJ, Chacko VP, van Zijl PC. 1999. Three-dimensional tracking of axonal projections in 
the brain by magnetic resonance imaging. Annals of Neurology 45(2): 265-269. 

Norris DG. 2001. The effects of microscopic tissue parameters on the diffusion weighted magnetic 
resonance imaging experiment. NMR in Biomedicine 14(2): 77-93. 

Ronen I, Ercan E, Webb A. 2013. Axonal and glial microstructural information obtained with 
diffusion-weighted magnetic resonance spectroscopy at 7T. Frontiers in Integrative Neuroscience 
7: 13. 

Shenton ME, Whitford TJ, Kubicki M. 2010. Structural neuroimaging in schizophrenia: from methods 
to insights to treatments. Dialogues in Clinical Neuroscience 12(3): 317-332. 

Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. 2006. Tract-based spatial statistics: voxelwise 
analysis of multi-subject diffusion data. NeuroImage 31(4): 1487-1505. 

52



Computing average cortical profiles at 3 tesla 

René C.W. Mandl1,2, Martijn P. van den Heuvel1, Rachel M. Brouwer1, 
Hilleke E. Hulshoff Pol1 

1Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center 
Utrecht, Utrecht, The Netherlands 

2Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University 
Hospital, Psychiatric Center Glostrup, Denmark 

e-mail: rmandl@umcutrecht.nl 

Abstract 

The cortex of the human brain can be divided into different layers (or lamina) based on 
differences in architecture/function. Extensive research conducted over the last decades 
showed that in particular the frontotemporal part of the cortex is implicated in 
psychiatric diseases, especially in schizophrenia. Numerous MRI studies using MRI 
scanners operating at conventional field strengths (e.g. 1.5, 3 tesla) consistently showed 
a disease-related thinning of the cortex in these regions but these studies could not 
provide any information on which of the different layers were implicated. The main 
reason is that at conventional field strengths SNR limitations result in an image 
resolution that is simply too coarse to detect the individual layers. One solution is to 
acquire data using ultra-high field (e.g. 7 tesla) MRI because the SNR is directly related 
to the main magnetic field strength. However, acquiring large datasets at ultra-high 
field MRI scanners is often more complex than at conventional MRI scanners. 
Currently we are working on new ways to combine information extracted from 3 tesla 
and 7 tesla data. Using a series of post-processing steps we are able to extract certain 
cortical information for existing large sets acquired at 3 tesla containing both patients 
with schizophrenia and healthy controls. A smaller dataset acquired at 7 tesla will then 
be used to validate/interpret apparent disease-related laminar differences found at 3 
tesla. 

Key words  
Cortical layers, schizophrenia, human brain, MRI 

1. Introduction 
Many psychiatric diseases such as schizophrenia are characterized by non-focal cortical 
thinning of several brain regions (Garey, 2010). Analysis methods like Freesurfer 
((http://surfer.nmr.mgh.harvard.edu) can be used to study cortical thickness but they do not 
provide any information on which cortical layers are implicated. The main reason is that the 
resolution of images acquired routinely using conventional MRI field strengths (e.g., 3 tesla) 
is considered to be too low. One solution is to increase imaging resolution by using ultra-
high field MRI (for example 7 tesla) (Zwanenburg et al., 2012; Waehnert et al., 2013). But 
ultra-high field MRI is usually not readily available and performing large cohort studies 
(needed because the effect sizes for psychiatric diseases like schizophrenia are typically very 
small) at 7 tesla is complicated. In this lecture I will discuss a new automatic analysis method 
that we recently proposed (Mandl et al., 2014), which extracts detailed cortical profile 
information from conventional whole brain T1-weighted scans acquired at 3 tesla and which 
are part of a standard scan protocol. This method exploits the fact that aberrations found in 
psychiatric diseases are typically non-focal in nature. 
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Figure 1. T1-weighted image acquired at 7T (A). T1-weighted image of same subject acquired at 3T 
(B). Image B after 3D deconvolution (C). White bars denote cross-sections and corresponding profiles 
shown in lower row. Automatic cortical delineation computed on original 3T (B) image shown in D. 

2. Methods 
To assess its feasibility we used the 3D FFE T1-weighted images (acquired on a 3 Tesla 
Philips Achieva; TR/TE 10 ms/4.6 ms; flip-angle=8°; FOV= 240x240 mm; 200 slices, 0.75 
isotropic voxel size; total scan duration 602 s) from 5 healthy subjects who participated in a 
previous study and for which written informed consent was obtained prior to scanning. 

In the first step, Freesurfer was used to automatically delineate the inner (white matter), the 
outer (pial) boundaries and the curvature of the cerebral cortex allowing us to measure 
cortical profiles at every cortex position. Next, the resolution of the original T1-weighted 
image was upsampled by a factor of 2 (in all 3 directions) after which parallel iterative 3D 
deconvolution (http://fiji.sc/Parallel_Iterative_Deconvolution) (Wiener filter preconditioned 
landweber method; 3 iterations; normalize PSF; anti-ringing step; divergence detection; 
gamma = 0) was applied. This step enhances image details but also substantially reduces 
signal-to-noise ratio. Then for each subject and each cortical region (assuming the same 
cytoarchitecture within a single region, e.g. Brodmann areas (BA)) the deconvoluted data 
was sampled along all cortical profiles. Next, to increase homogeneity, only profiles were 
selected for which the absolute curvature of the cortex was < 0.1 and the length (before 
normalization) deviated < 10% from the median profile length for the specific area. Finally, 
these selected profiles were aligned (scaling and translation) and averaged (increasing SNR 
again) yielding one average cortical profile per region (per subject). 

3. Results 
Figure 2 (left panel) shows the mean cortical profiles computed for 4 different Brodmann 
areas. The right panel shows the profiles (averaged over all 5 subjects) created without the 
application of the additional selection step (that is, all profiles found for one Brodmann area). 
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Figure 2. The average cortical profiles computed for four different Brodmann areas from five healthy 
subjects are shown in the left panel. Average profiles (averaged over all subjects) computed without 
additional selection on curvature and length are shown in the right panel. 

4. Discussion  
Our initial results show (left panel) that for each of the four Brodmann areas the average 
cortical profiles of the five subjects are in good agreement. Moreover, our results clearly 
show that the average profiles are more similar between homologue Brodmann areas than 
between different Brodmann areas (for instance, the height of the maximum near the pial 
surface), which indicate that this method is sensitive enough to detect interregional 
differences. Additional selection using curvature and profile length (left panel) results in 
more pronounced profiles compared to no selection (right panel) and may allow for a better 
detection of subtle group differences. We note that this method is not limited to T1-weighted 
images (as used in this example) but can be used with any type of contrast provided that 
accurate cortical delineation is possible. Future work includes relating the differences found 
between average cortical profiles of different Brodmann areas to known differences in 
cyto/myelo-architecture for these areas.  

5. Conclusion  
The results of our initial experiments suggest that this novel automatic analysis method can 
be used to extract detailed information on cortical configuration from existing large datasets 
acquired with MRI scanners operating on conventional field strengths. The application of 
this method is not limited to psychiatric diseases but it can also be used to study for instance 
cortical changes during brain development. 
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Abstract 

Advances in medical imaging techniques, such as magnetic resonance imaging, 
computed tomography and positron emission tomography, have enabled identification 
of brain regions affected by various neurodegenerative and neuropsychiatric disorders, 
such as Alzheimer’s disease or schizophrenia. Recent efforts are to use medical images 
also to aid diagnostics of these disabling diseases, as early and accurate diagnostics can 
significantly improve patient recovery rates and the overall prognosis (Perkins et al., 
2005). Algorithms proposed for diagnostics are based on classification of brain images 
of patients and healthy controls. Due to large amount of imaging features, classification 
is often preceded by data reduction which enables detection of brain areas influenced 
by the disease as well. The aim of this part of proceedings is to introduce methods for 
image data reduction and classification. 

Key words  
Reduction, classification, principal component analysis, linear discriminant analysis, 
classification performance. 

1. Introduction to image data reduction and classification  
The process of image data reduction and classification can be depicted in a scheme (Figure 
1). Prior to data reduction, preprocessing of the brain images is often performed to ensure 
comparability of the images from different subjects. The data preprocessing step depends on 
the type of input image data. Usually, the images are spatially normalized to the same 
stereotactic space using registering each of the images to the same template image (image 
registration is described in more detail in Dr. Daniel Schwarz’s extended abstract). The 
registered images can be also further segmented into gray matter, white matter and 
cerebrospinal fluid (image segmentation is covered in lecture by Assoc. Prof. Jan Kybic) and 
smoothed.  

 

Figure 1. Illustrative scheme of image data analysis. The input images are preprocessed, reduced and 
classified into one of the groups. 
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After image preprocessing, data reduction and classification are performed. In contrast with 
data preprocessing techniques, the reduction and classification methods are applicable for 
various input image data, for example two-dimensional (2-D) image data of human faces (Xu 
et al., 2008), 2-D cell images (Orlov et al., 2010), three-dimensional (3-D) or four-
dimensional (4-D) medical images of brain, heart, etc. Meyer-Lindenberg et al. (2001) 
classified brain images acquired with positron emission tomography; Demirci et al. (2008a) 
used functional magnetic resonance images and Wang & Verma (2008) used diffusion tensor 
brain images in recognition of schizophrenia patients. Fan et al. (2005), Kawasaki et al. 
(2007) or Sun et al. (2009) classified patients with schizophrenia and healthy controls on the 
basis of 3-D anatomical magnetic resonance image data.  

The image data reduction and classification methods are described in following chapters. The 
last chapter is dedicated to evaluation of classification performance.   

2. Image data reduction  

In neuroscience, brain image data are 3-D or 4-D datasets with hundreds of thousands or 
millions of voxels. Such large image datasets leads to the so-called “small sample size 
problem” (Lemm et al., 2011). It means that the number of classified subjects is considerably 
smaller than the number of features. Here, the features correspond to image voxel values. 
Demirci et al. (2008b) declare that the small sample size can lead to overtraining of 
classification algorithms and thus to instable classification results. The small sample size 
problem is also connected with the “curse of dimensionality” – every subject image can be 
depicted as a dot in a high dimensional space, where axes correspond to image voxels. The 
space is mostly empty due to a lower number of dots compared to the space dimensionality. 
The curse of dimensionality can also cause problems during subsequent image analyses 
(Bishop, 2006). 

For that reason it seems reasonable to reduce the image data before their classification. 
Images can be reduced using results of voxel-by-voxel statistical tests. It means that the 
voxels which statistically significantly differ among the groups are selected as the features 
entering into classification algorithms. These voxels can discriminate the groups quite 
successfully. However, Guyon & Elisseeff (2003) warn against selection of features 
separately with no regard to other features. According to Guyon & Elisseeff, a feature that is 
completely useless by itself can provide a significant improvement of classifier performance 
when taken with others. Demirci et al. (2008b) point out that the use of separate voxels 
instead of brain regions can lead to overtraining of a classifier and classification results can 
be extremely dependent on the real data.  

Fan et al. (2005) choose voxels not only according to their own discrimination power but 
also according to a discrimination power of the neighbouring ones. They reduce brain images 
into compact clusters of voxels with similar discrimination power. However, neither this 
approach allows using information included in all voxels during reduction and subsequent 
classification. Multivariate data reduction techniques, such as principal component analysis 
(PCA), can be used instead to overcome all the mentioned problems. 

 

2.1. Principal component analysis 
The principal component analysis is the most familiar multivariate data reduction method. It 
is based on an assumption that there are correlations among variables in large datasets. It 
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means that a part of data is redundant (Wallisch et al., 2009). The goal of PCA is to decrease 
data dimensionality while keeping as much original data variability as possible. Input 
variables are transformed into new uncorrelated variables and are sorted according to 
decreasing variance. The new variables or features are called principal components and they 
are linear combinations of the original ones (Figure 2). If original variables are correlated, it 
is sufficient to choose a certain portion of the principal components to preserve the most of 
the original variability (Jolliffe, 2002).  

 

Figure 2. Illustrative example of original variables (x1, x2) and principal components (y1, y2) obtained 
using PCA. 

The PCA algorithm is described in detail for example in (Jolliffe, 2002; Shawe-Taylor & 
Cristianini, 2006). Briefly, the algorithm comprises computation of a covariance matrix of 
voxels and its eigenvalues and eigenvectors. Original data are then reduced by using only a 
selected number of eigenvectors. The steps of the PCA algorithm can be described in more 
detail as follows: 

1. Calculate n x n covariance matrix of voxels XXXXC T

N 1
1 , where 

X is N x n data matrix composed of N input images with n voxels (rows of the 

matrix X are original 3-D images transformed into one-dimensional (1-D) 

vectors) and X  is matrix with all rows equal to a mean image x  which is 

defined by 
N

i
iN 1

1 xx , where xi, i = 1,...,N, are rows of the matrix X. 

2. Find j eigenvalues and vj eigenvectors of the covariance matrix C, 

j = 1,...,n, where n is the number of voxels.  

3. Select d eigenvectors that correspond to d eigenvalues which explain most of the 

original data variability. 

4. Construct n x d projection matrix V with column-wise computed eigenvectors vj. 

5. Compute a reduced data matrix Y with the size of N x d by VXXY . 
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y1

y2
x2

x1
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One of the most important steps in PCA is the selection of the number of principal 
components. The most common way how to choose the number of principal components is 
to select the number according to the cumulative percentage of an explained variability – a 
number around 70% to 90% is usually selected from a scree plot, which shows the portion of 
the variance in the data explained by each principal component. It is also possible to heighten 
the threshold above 90% in the case when only one or two components explain most of the 
variability or to lower the threshold under 70% in the case when too many components are 
required to explain the variability (Jolliffe, 2002). 

Even though the PCA algorithm seems easy to use, its application in neuroscience is not so 
simple. The brain images are so huge that they lead to large covariance matrices of voxels, 
which are difficult to evaluate because of high computational and memory requirements. 
During last decades, modifications of PCA were developed to overcome these problems. 
Two-dimensional principal component analysis (2DPCA) was proposed by Yang et al. 
(2004) in the face recognition field. 2DPCA is based on computation of a covariance matrix 
of rows or columns of an input 2-D image instead of the covariance matrix of voxels. Zhang 
& Zhou (2005) designed two-directional two-dimensional PCA ((2D)2PCA) which is a 
modification of 2DPCA. In (2D)2PCA, an input image is reduced using eigenvectors of 
2DPCA working in the row direction of images and eigenvectors of 2DPCA working in the 
column direction. Another improvement of 2DPCA was drafted by Xu et al. (2008) and Kim 
et al. (2008), who called it bidirectional 2DPCA. The principle of bidirectional 2DPCA is 
combining features obtained by row-wise 2DPCA and column-wise 2DPCA. 

Another approach how to avoid computation of the covariance matrix of voxels was used by 
Wang et al. (2006) and Demirci et al. (2008b) in analyses of functional magnetic resonance 
images. Eigenvectors of the covariance matrix of voxels are computed using transformation 
of eigenvectors of the covariance matrix of persons. The PCA based on the covariance 
matrix of persons was also applied in the reduction of MRI images of preterm infants and 
term controls by Thomaz et al. (2007). 

Wang et al. (2006) proposed a PCA technique based on a cascade recursive least squared 
network. This modification of PCA enables computation of principal components from the 
input image data directly. Therefore it requires neither computation of the covariance matrix 
of voxels nor allocation of all images into memory simultaneously. However, a disadvantage 
of the modification of PCA lies in impossibility of using criteria described by Jolliffe (2002) 
for choosing the most appropriate number of principal components. 

The large image datasets are not the only problem in PCA. Principal components that are 
nonlinear combinations of input variables are demanded in selected cases and such 
computations are not possible with the original PCA. Therefore nonlinear PCA was designed 
by Friston et al. (2000). Moreover, there are other modifications of PCA in the literature; for 
example functional PCA (Viviani et al., 2005), kernel PCA (Shawe-Taylor & Cristianini, 
2006) or generalized PCA (Ye et al., 2004). 

3. Image data classification  
The preprocessing and the reduction steps are followed by classification of image data. There 
are lots of classification methods in the literature. This subchapter is not dedicated to 
complete overview of all classification methods. Its goal is to describe methods which are 
used in classification of patients with neurodegenerative and neuropsychiatric disorders, 
briefly. 
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Previously, it was not possible to use information from the whole brain images in 
classification, due to high computational demands. So, Leonard et al. (1999) classified 
subjects into a group of patients with schizophrenia and a group of healthy controls 
according to ten selected anatomical measures which were mean volumes of the left and 
right hemispheres, volumes of the left and right parts of third ventricle and six sulcal 
landmarks in Talairach space. In total, 76.0% of patients and 79.0% of healthy controls were 
classified correctly using these ten anatomical variables. Nakamura et al. (2004) performed 
linear discriminant analysis using fourteen brain anatomical measures (volumes of fourteen 
selected regions of interest). The analysis showed correct classification of 77.8% of the 
female and 80.0% of the male patients with schizophrenia and 86.4% of the female and 
80.0% of the male controls. 

Even though classification efficiency of algorithms used by Leonard et al. (1999) and 
Nakamura et al. (2004) was quite high, classification performance can be further improved 
using information from whole brain images. Kawasaki et al. (2007) discriminated 3-D 
magnetic resonance (MR) brain images which were segmented into the grey matter, white 
matter and cerebrospinal fluid with the use of multivariate linear model based on canonical 
variates analysis. An accuracy of their classifier was 84.4%. Meyer-Lindenberg et al. (2001) 
also used canonical variates analysis for classification. In comparison with Kawasaki et al. 
(2007), they classified positron emission tomography imaging data instead of segmented MR 
images and reached the accuracy of 94.0%. Sun et al. (2009) achieved classification 
efficiency of 86.1% with the use of sparse multinomial logistic regression. Shi et al. (2007) 
classified functional MRI data using pseudo-Fisher linear discriminative analysis. Their 
classifier enabled correct classification of 83.0% of patients with schizophrenia and 74.0% of 
control subjects.  

Support vector machines (SVM) technique is also often used for brain image classification. 
The goal of SVM is to construct a hyperplane which is capable of separating images from 
different groups (Figure 3). Especially, the main effort is the best possible division of margin 
images called support vectors (Bishop, 2006; Shawe Taylor & Cristianini, 2006). The 
efficiency of linear SVM was about 90% in classification of brain images of patients with 
Alzheimer disease (Klöppel et al., 2008) and up to 90% in classification of patients with 
schizophrenia based on structure-specific 9-parameter affine transformations of MRI images 
(Pohl & Sabuncu, 2009). Nonlinear SVM was used by Fan et al. (2005) with the accuracy of 
91.8% in the schizophrenia research. Fan et al. (2005) proposed a complex algorithm 
comprising data preprocessing, selection of features and classification methods. Later the 
algorithm was called COMPARE (Classification of Morphological Patterns Using Adaptive 
Regional Elements) by Fan et al. (2007). The algorithm was also used in classification of 
relatives of schizophrenia patients (Fan et al., 2008). 

Beside discriminant analysis methods and support vector machines, clustering methods can 
be also used for data classification. Clustering methods are for example the centroid method, 
the average linkage method or the k-nearest neighbor (k-NN) algorithm. The principle of 
clustering methods is computation of distances among images in the high dimensional space. 
The images are dots in the space and voxels are axes (Figure 4). In the centroid method, 
distances of a new image from centroids of both the image groups (for example patients and 
healthy controls) are computed. The image is then classified into the group represented by 
the closer centroid (Legendre & Legendre, 1998). In the average linkage method, the shorter 
one of the average distances of the new image from all images of the first group and from all 
second group ones indicates classification of the new image into the group (Legendre & 
Legendre, 1998). In k-NN algorithm, a new image is classified into the group which is most 
common among its k nearest neighbors (Bishop, 2006). 1-nearest neighbor is often used in 
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the face recognition. It means the algorithm is based on looking for one image which is the 
most resembling to a new image (Yang et al., 2004; Delac et al., 2005; Kim et al., 2008). 
Wang & Verma (2008) used k-NN in classification of diffusion tensor images of patients 
with schizophrenia. They compared results of classification using k-NN to the results 
obtained using support vector machines. 

 

 

Figure 3. Classification of image data using support vector machines. The triangles represent patients, 
the circles depict healthy controls. The bold symbols are the support vectors which lie in the margins 
(denoted as dashed lines). The solid line represents the separating hyperplane. The axes y1 and y2 
correspond to principal components. 

 

 

Figure 4. Classification of image data using clustering methods. The triangles represent patients, the 
squares depict healthy controls. The crosses are group centroids. The new image which is supposed to 
be classified is denoted with the circle. The axes y1 and y2 correspond to principal components. 
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Figure 5. Classification of image data using Fisher’s linear discriminant analysis. The triangles 
represent patients, the circles depict healthy controls. The crosses are group centroids. The axes y1 and 
y2 correspond to principal components. The projection 1 shows large distance between the groups but 
there is an overlap of the groups. The projection 2 shows small variability between the groups but there 
is also an overlap of the groups. The projection 3 maximizes the distance between the groups and 
minimizes variability within the groups and there is no overlap of the groups. The dashed line 
represents a discriminant hyperplane which is perpendicular to the projection hyperplane. 

Other data classification techniques, such as neuronal networks, decision trees and random 
forests, have not been used in brain image data classification extensively yet. So, linear 
discriminant analysis, which has been used widely in classification of images of patients with 
neurodegenerative and neuropsychiatric disorders, is described in more detail here. 
Specifically, the following subchapter is dedicated to Fisher’s linear discriminant analysis. 

3.1. Fisher’s linear discriminant analysis 
The principle of the Fisher’s linear discriminant analysis is based on transformation of the 
data in original multidimensional space into 1-D space while maximizing the distance 
between the groups and minimizing variability within the groups (Figure 5). Thus, the 
Fisher’s linear discriminant is defined as:  

 J( ) = ( ) , (1) 

where z  is a projection of the centroid of patients  (D..diseased) into 1-D space, z  is a 
projection of the centroid of controls  (H..healthy), s  is a variance in a group of patients 
after projection into 1-D space and s  is a variance in a group of controls after the projection.  
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Figure 6. Illustration of projection of a point into 1-D space. The axes y1 and y2 correspond to principal 
components. The point yi represents the ith subject and zi is the projection of the point yi to the 1-D 
hyperplane given by the direction vector w. 

The centroids are the mean vectors of patients and controls: 

 y = y y y ,  (2a) 

 y = y y y ,  (2b) 

where y  is a value of the first principal component (i.e. a value of the first variable in a data 
set reduced by PCA) in an ith subject,  and  are a number of patients and controls, 
respectively, and  is a number of variables after PCA reduction. The projections of the 
centroids in 1-D space can be calculated as z =  and z = , where  is a 
direction of the discriminant hyperplane. In general, projection of any point (i.e. subject) into 
1-D space is visualized in Figure 6 and can be computed as: 

 =   (3) 

 

The variance in the group of patients (s ) is a squared distance of projections of all patients 
into the 1-D space from the projection of the centroid of patients and can be expressed as: 

s = (z z )
= ( )
= ( ) = ( )( ) = , 

where  is a covariance matrix of patients. 

Accordingly, the variance in the group of controls is expressed as: 

y1

y2

zi
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s = (z z ) = ( ) = ( )( ) = , 
where  is a covariance matrix of controls. 

In the denominator of the Fisher’s linear discriminant, there is a sum of the variances s  and s  which can be re-written as: s + s = += ( )( ) + ( )( )
= ( )( ) + ( )( )= , 

where  is the within-class scatter matrix and is calculated as = + =( )( ) + ( )( ) . If there is not the same number of 
subjects in the groups,  is computed as = ( ) ( )( ) . 

The numerator of the Fisher’s linear discriminant can be re-written as: (z z ) = ( ) = ( ) = ( )( )= , 
where  is the between-class scatter matrix. 

Thus, Fisher’s linear discriminant can be expressed as: J( ) = ( ) = . 

The goal is to maximize J( ). Therefore, the derivative of J( ) is calculated and set to 0: J( ) = 0 

( ) = 0 ( ) ( )( ) = 0 ( ) = ( )  

 is in the direction of ( ), because = ( )( ) = ( )
, where  is a scalar. The scale factor of  is immaterial, so it is possible to ignore  

and  and we get:  ~   ~ ( ) 
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The direction of the discriminant hyperplane can be then calculated as: 

  ~ S ( ). (4) 

When the direction of the discriminant hyperplane is known, the subjects are classified into 
the group of patients or controls according to if they are place on the left or right side of the 
discriminant hyperplane. 

4. Evaluation of classification performance 
Evaluation of classification performance is a very important step in the image data reduction 
and classification. The evaluation requires a testing data set, i.e. data not used during 
classifier training. Ideally, independent data sample (e.g. image data from different clinical 
centre) is used for testing. However, such independent sample is usually not available, so 
splitting of the data set into a training set and a testing set is performed (Kuncheva, 2004). 
There are several ways of the data set splitting: 

 Resubstitution method – Classifier is trained and tested on the same data set (i.e. all 
image data are used for training and testing). It leads to overtraining of the classifier 
and the classification performance is optimistically biased. So, resubstitution is not 
recommended. 

 Bootstrap – A training set is selected randomly from the data set, with replacement. 
The testing set comprises data which were not used for training. 

 Hold-out method – The data set is randomly split into two parts and one part is used 
for training and the other one for testing. Usually, the training set contains one half 
of the data and testing set the other half or the training set comprises two-thirds of 
the data and the testing set one-third of the data. If the data sets are split into halves, 
it is possible to swap the two subsets and average the classifier performances. 
Another modification is to perform the hold-out several times, i.e. to do several 
random splits of the data set into the training and testing sets (as shown in Figure 7), 
and average the results. 

 k-fold cross-validation – this method randomly splits the image data into k roughly 
equal-sized parts (the folds). The k – 1 parts are used for training and kth fold is a 
testing image set. The training and testing steps are repeated k times; it means every 
fold is used for testing exactly once (see Figure 7). The k classification results are 
then combined (usually averaged) to estimate the classification efficiency. 
Commonly, 10-fold cross-validation is used (Hastie et al., 2009; Kohavi, 1995). If k 
is equal to the number of images, the N-fold cross-validation is called leave-one-out 
cross-validation (LOOCV). In this case one image is chosen as a testing image and 
the remaining images constitute the training dataset. This is repeated for each image 
(Fan et al., 2008; Hastie et al., 2009).  

 

75



 

Figure 7. Example of splitting a data set into training and testing subsets using hold-out method which 
is repeated 5-times and using 5-fold cross-validation. 

Demirci et al. (2008b) recommend using splitting into the training and testing data set in all 
steps of data recognition. Otherwise, biased results could be obtained. The correct image data 
reduction and classification scheme is visualized in Figure 8 and can be briefly described in 
following steps: 

1. Reduce training images, for example with the use of the projection matrix of PCA. 
It is important to notice that training images without the testing image are the input 
into the reduction methods.  

2. Reduce the testing image using the computed projection matrix from the previous 
step. 

3. Classify the testing image into the group of patients or controls with the use of a 
classification algorithm trained on reduced training image data. 

As the correct class label of the image is known, the classification efficiency is easy to 
calculate. The efficiency can be derived from the confusion matrix (Altman, 1999) that is 
visualized in Tab. 1. The confusion matrix shows: 

 how many recognition results were true positive (TP); it means how many patient 
images were correctly classified as patient ones; 

 how many recognition results were false negative (FN); it means how many patient 
images were incorrectly classified as control ones; 

 how many recognition results were true negative (TN); it means how many control 
images were correctly classified as control ones; 

 how many recognition results were false positive (FP); it means how many control 
images were incorrectly classified as patient ones. 
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Figure 8. Scheme of image data reduction and classification with correctly performed leave-one-out 
cross-validation. The scheme was created on the basis of figure in (Thomaz et al., 2007). X is the image 
data matrix where rows are 3-D images transformed into 1-D vectors; x  is the mean image; X  is the 
matrix with all rows equal to the mean image; Y is the reduced matrix computed using PCA, z is the 
vector with classification scores, V is the projection matrix of PCA and w is the projection vector in 
LDA. 

Table 1. Confusion matrix. TP stands for true positive recognition results, FP stands for false 
positive results, TN stands for true negative results and FN stands for false negative results.  

  Recognition result 

Correct class Patients (+) Controls (-) 

Patients (+) TP FN 

Controls (-) FP TN 

 

The values in the confusion matrix allow for evaluation of classification efficiency using 
following measures: 

  accuracy = 
FNFPTNTP

TNTP , (5) 
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  sensitivity = 
FNTP

TP , (6) 

  specificity = 
FPTN

TN . (7) 

The accuracy is thus the percentage of all correctly classified subjects among all subjects, the 
sensitivity is the proportion of patients who are correctly identified as patients by the 
classification method, and specificity is the percentage of correctly classified healthy 
controls. Even though accuracy is the only measure reported in many scientific papers, 
Demirci et al. (2008b) urge to report sensitivity and specificity as well. 
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Abstract 

The aim of the lecture is to introduce image segmentation based on features. The 
feature vector containing information about colour or texture is acquired in every image 
element (pixel, voxel or superpixel). The image elements are then classified into 
classes, such as background or object elements, based on the feature vectors. If data 
labelled by an expert are available, classification into the classes is performed using 
supervised methods, such as linear classifier, support vector machines (SVM), 
Adaboost and random decision trees. If data labels are not accessible, unsupervised 
methods are used, e.g. k-means method or expectation-maximization (EM) algorithm. 
Image segmentation can be further improved using information about spatial 
distribution of the classes. 

Key words  

Image segmentation, supervised, unsupervised, support vector machines, Adaboost, 
random decision trees, k-means, expectation-maximization algorithm. 
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Abstract 

More than two thirds of healthy population has an experience with the déjà-vu 
phenomenon. It is a feeling of re-experiencing distinct situation along with the 
realization that the feeling is inappropriate. There is no known widely agreed 
mechanism of non-pathological déjà-vu, though electrophysiological studies with 
intracerebral electrodes indicate, that déjà-vu in patients with temporal epilepsy is a 
consequence of subtle disruptions in communication among brain regions involved in 
memory networks. Using two statistical technics, we investigated the relationship 
between gray matter morphology and frequency of déjà-vu experience in the cohort of 
healthy subjects. We acquired whole head magnetic resonance images with high spatial 
resolution. The images were processed by commonly used Voxel Based Morphometry 
method – an univariate linear model –  and by complementary Source Based 
Morphometry method (SBM). SBM employs Independent Component Analysis which 
blindly separates independent spatial sources of inter-subject variability in local gray 
matter volume (GMV). We found statistically significant effect of déjà-vu frequency 
for one of the sources – the more frequent experience, the less local GMV. The source 
was localized in subcortical and mesiotemporal cortical regions which are known to 
play important role in memory networks. The results support hypothesis of 
neurophysiological origin of déjà-vu and its relationship to morphological and 
functional changes in the memory networks. 

Key words  

Déjà-vu, brain, morphology, ICA. 

1. Introduction 

Déjà-vu (DV) is an experience of two concurrent feelings, a familiarity of distinct situation 
along with an awareness that this familiarity is inappropriate (Brown, 2003). The DV is 
reported by 60–80% of healthy population (Adachi et al., 2003). Although, there is no known 
widely agreed mechanism of its origin, recent review suggests that it might be caused by 
disruptions in attention and memory processes (Adachi et al., 2003). Moreover, DV appears 
as an aura in patients with temporal epilepsy disease. This fact motivated several 
electrophysiological studies which together indicate DV related network comprising 
mesiotemporal regions, which are known to be parts of memory networks (Guedj et al., 
2010; Kovacs et al., 2009; Vignal et al., 2007). 
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The goal of our study was to investigate if there is a similar network in healthy people 
involved in DV generation. We searched for possible morphological alterations in memory 
networks by comparing subjects with and without self-reported DV experiences. 

We used two commonly used statistical technics to search for brain regions with 
hypothesized alteration in local gray matter volume (GMV): (a) an univariate statistical 
approach – Voxel Based Morphometry (VBM) (Mechelli et al., 2005) which uses general 
linear model to test the hypothesized effect independently in each voxel and (b) multivariate 
statistical method – Source Based Morphology (SBM) (Xu et al., 2009) which employs 
Independent Component Analysis to find spatial sources of inter-subject variability in local 
GMV. Both methods provide complementary results. While VBM can reveal spatially very 
distinct but sufficiently sized effects and lacks when the effect size is low, SBM was shown 
to be more sensitive to subtle but still vastly spatially distributed effects in image data 
(Kasparek et al., 2010). 

2. Methods 

2.1. Subjects 
The study cohort consisted of 113 subjects (Table 1), all right-handed healthy volunteers 
who participated in various functional MRI studies in our laboratory, and have fulfilled the 
Czech version of the Inventory for Déjà Vu Experiences Assessment (IDEA) (Sno et al., 
1994). At first, the subjects were divided into two groups according to the answer to the first 
question of the IDEA – “Have you ever had the feeling of having experienced a sensation or 
situation before in exactly the same way when in fact you are experiencing it for the first 
time?” Subjects who answered “yes” formed déjà-vu group (DVG) and subjects who 
answered “never” formed non déjà-vu group (nonDVG). Secondly, the subjects were 
categorized into 5 groups according to the reported frequency of DV occurrences (Table 1). 

Table 1. Demographic data. Groups “often” and “very often” merged together due to small sample 
size. No significant effect of group factor neither for age nor for gender. 

Group 
(déjà-vu frequency) N Age 

median (range) 
Gender 

males/females 

never 26 24 (20 ÷ 50) 13/13 
very infrequent 24 24 (20 ÷ 38) 10/14 

sometimes 52 24 (19 ÷ 46) 27/25 
often 9 24 (21 ÷ 27) 6/3 

very often 2 26 (24 ÷ 28) 2/0 

 

2.2. MR imaging and preprocessing 
All images were acquired on 1.5T Siemens Symphony scanner using 3D acquisition technic 
with IR/GR sequence, TR 1700 ms, TE 3.93 ms, TI 1100 ms, flip angle 15°, 160 sagittal 
slices, voxel size 1.17 x 0.48 x 0.48 mm, FOV = 246 x 246 mm, plane matrix size 512x512 
voxels. The raw data were visually inspected to avoid inclusion images with huge image 
artifacts. No images were excluded. 

Images were preprocessed using SPM5 software (http://www.fil.ion.ucl.ac.uk/spm), running 
on Matlab platform. Data were segmented into gray and white matter segments using 
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Bayesian framework algorithm (Ashburner and Friston, 2005). The voxels values in resulting 
images had a character of posterior probability of belonging to either tissue classes. The 
images were registered by high-dimensional non-linear transformation (DARTEL - 
diffeomorphic anatomical registration through exponentiated lie algebra) to a study specific 
template (Ashburner, 2007). The resulting gray matter volume images were smoothed with 
8mm FWHM Gaussian Kernel to improve signal-to-noise ratio and intensity normalized 
using individual estimates of total intracranial volume to filter out the effect of head size 
variability. Finally, the individual 3D image data were reshaped to form 2D matrix 

nSnVD , , where nS is number of subjects and nV is number of voxels. 

2.3. Statistical Analysis 
2.3.1. Voxel Based Morphometry 

The general linear model used for VBM has the form of: 

XD  

where X is a design matrix of ANCOVA model with factor “group” and additional regressors 
of age and gender which model nuisance variability in data;  stands for estimated effects of 
regressors and  for model residuals. The effect of factor “group” was then tested by two 
sample T-test to reveal voxels with significant difference in local GMV between DVG and 
nDVG. The resulting statistical parametric map of T-values was thresholded at the level of 
p<0.05, corrected for multiple testing by Random Field theory approach (Nichols and 
Hayasaka, 2003) which controls Family Wise Error. 

2.3.2. Source Based Morphometry 

The resulting 2D matrix D was subjected to SBM. At first, the dimensionality of the data was 
reduced using Principal Component Analysis (PCA) by retaining optimal number nC of 
spatial principal components: 

PCA reduction step: dwMRD  

where nCnVR , is a matrix of principal components and nSnCdwM , is a de-
whitening matrix. The optimal number nC was estimated using Minimum Description 
Length Criterion (MDL) (Li et al., 2007). Then, spatial ICA was performed using Infomax 
algorithm (Hyvarinen and Oja, 2000): 

ICA step: WRS  

where nCnVS , is a source matrix, which contained spatial distributions of maximally 
independent sources and nCnCW ,  is de-mixing matrix. By merging both former 
equations together we see that: 

ASdwMWSD 1  

where nSnCA , is mixing matrix, which held the information of how much does each 
source explain variability in each subject, i.e. subject’s loadings, with the interpretation of 
the higher subject’s loading, the more local gray matter in the corresponding source. The 
loadings were filtered using linear regression model to discard effects of age and gender and 
subsequently used to statistically test each source for relationship to DV. We used non-
parametric statistical testing because the data did not meet Gaussian distribution and due to 
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unbalanced numbers of subjects in groups. Mann-Whitney test was used to detect sources 
which show difference in local GMV between DVG and nonDVG and Kruskal-Wallis test to 
assess the relationship between local GMV and DV frequency. The level of statistical 
significance was set to p<0.05, Bonferoni corrected for multiple tests. The columns of source 
matrix were reshaped back to the original 3D representation, normalized to have unit 
standard deviation and thresholded with |Z|>2.5 to depict brain regions with the strong DV 
effect. 

3. Results 

3.1. Voxel Based Morphometry 
The VBM method did not find any voxels with significant effect of factor “group”. 

3.2. Source Based Morphometry 
After data preprocessing and forming the matrix D, the optimal number of PCA components 
was set to eight as estimated using MDL criterion. The matrix of principal components R 
was then subjected to ICA algorithm which resulted in eight independent spatial components 
described by matrices S (spatial sources) and A(subjects loadings). The row vectors of A, 
adjusted for age and gender, were tested for difference between DVG and nonDVG. One 
component showed significant effect (Mann-Whitney U test, Z=2.81) of less local gray 
matter volume in the DVG when compared to nonDVG. The spatial source comprised 
bilateral mesiotemporal cortices, bilateral insula, superior temporal sulci and subcortical 
regions (Table 2, Fig. 1). 

Table 2. Regions with greater local gray matter volume in subjects without déjà-vu experience when 
compared to subjects with déjà-vu experience. 

Resulting regions 
MNI 

coordinates 
[mm] 

Number of 
voxels 

Z-score in 
maximum 

L Putamen / Caudatum -20, 10, -6 331 3.89 
L Superior Temporal Sulcus -52, -46, 8 217 3.80 
L Parahippocampal Gyrus / Hippocampus / 
Fusiform Gyrus / Amygdala -30 -34 -14 487 3.67 

L / R Thalamus 0 ,-16, 6 242 3.65 
R Putamen / Caudatum 22, 10, -6 264 3.47 
R Inferior Parietal Lobule / Superior Temporal 
Sulcus 50, -44, 20 69 3.28 

R Parahippocampal Gyrus / Hippocampus / 
Amygdala 22, -6, -22 238 3.11 

L Insula -36, -4, -2 94 2.89 
R Insula 38, 14, -6 104 2.88 

L, left,; R, right; MNI coordinates, coordinates in MNI stereotactic space (x,y,z); voxel size, 1.5 x 1.5 x 
1.5 mm 
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Figure 1. Regions with greater local gray matter volume in subjects without déjà-vu experience 
(nDVG) when compared to subjects with déjà-vu experience (DVG) as revealed by Source Based 
Morphometry method. The left panel shows the spatial distribution of the source thresholded with 
|Z|>2.5. The right panel shows bar graph of subjects loadings (Mann-Whitney U test, p<0.05, 
Bonferoni corrected for eight tests). 

The loadings of significant component were than tested for the effect of DV frequency. For 
this analysis the groups “often” and “very often” were merged together due to small sample 
sizes (Table 1) yielding 4 final groups. The Kruskal-Wallis ANOVA test revealed significant 
relationship between DV frequency and local GMV at the respective brain regions (H=8.48, 
p<0.05, Fig. 2). 

 

 

Figure 2. Statistically significant relationship between frequency of déjà-vu experience and local gray 
matter volume in brain regions depicted in Figure 1 (Kruskal-Wallis ANOVA, H=8.48, p<0.05). 
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4. Discussion 
While VBM did not reveal any differences in local GMV between DVG and nDVG, SBM 
showed a vastly spatially distributed pattern of brain regions which shares a subtle effect of 
local GMV decrease in DVG when compared to nDVG and moreover, showed that the 
decrease is proportional to the frequency of DV experiences. This pattern is similar to the 
recently identified reduction of local GMV in patients with mesial temporal lobe epilepsy 
(Pail et al., 2010) which indicates that there might be common process underlying the 
generation of non-pathological DV and DV occurring as an aura in epilepsy patients. 

The reason, why VBM lacked, might be an insufficient effect size in data resulting in false 
negative outcomes. Other reason could be the usage of parametric testing, a common practice 
in VBM studies, while the assumptions about normality of data might not be fulfilled. 

5. Conclusion 

Our study showed a pattern of mesiotemporal, subcortical and several cortical brain regions 
with reduction of local gray matter volume related to the increasing frequency of DV 
experiences and supports the hypothesis of neurophysiological origin of déjà-vu and its 
relationship to morphological and functional changes in the memory networks. Further, in 
accordance with the Kasparek et al. study (Kasparek et al., 2010) we concluded that Source 
Based Morphometry is more sensitive to subtle alterations in gray matter volume then Voxel 
Based Morphometry. 
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Abstract 

The aim of the talk is to introduce imaging genetics and its techniques and methods 
used in searching for associations between genes and brain structure or function. The 
imaging genetics enables to study how genes influence psychopathology of mental 
disorders and to investigate genes which are expressed in the brain. In the Alzheimer’s 
disease research, for example, combining the genetics and brain imaging data has led to 
increased rates of predicting Alzheimer’s disease. 
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Abstract 

This paper deals with utilization of discrete wavelet transform (DWT) for feature 
extraction in medical image classification. It presents exhaustive analysis of influence 
of various parameters of DWT on the resulting accuracy of classification. The 
experiments are performed and validated on a dataset of 104 patients with first episode 
schizophrenia and healthy volunteers. The best combination of parameters achieves 
accuracy of 84% with balanced values of sensitivity and specificity. 

Key words  

Wavelet transform, feature extraction, classification, schizophrenia, MRI. 

1. Introduction 
Machine learning methods are increasingly utilized for automated classification and 
diagnosis in various areas of medicine. In schizophrenia, however, the straightforward 
approaches fail to achieve accuracy and robustness sufficient for clinical application 
(Nieuwenhuis et al., 2012). Perhaps due to heterogeneity of the disorder and its 
manifestations or due to a complex pattern of relatively discrete local brain changes that 
might be difficult to capture by classification algorithms. There is, therefore, continuing 
search for optimal set of feature encoding strategies and robust classification approaches that 
would render the image-based classification useful in the clinical setting. 

A promising tool to deal with problems specific for medical image-based classification (high 
feature space dimensionality, redundancy of features and their complex spatial relations) is 
discrete wavelet transform (Misiti et al., 2007). This method enables extracting key features 
on multiple spatial scales by transferring the image into a new domain in which the 
frequency and space information is represented by functions of special form – wavelets. 
High potential of this approach has been demonstrated in several studies (Dluhoš et al., 2014; 
Hackmack et al., 2012; El-Dahshan et al., 2014), however, the exact influence of various 
parameters of DWT and following classification on final accuracy is unclear and has to be 
examined.  

The aim of the presented study was to perform a systematic analysis of influence of 
parameters of wavelet transform on classification of patients with first episode of 
schizophrenia (FES) and healthy controls (HC) and to find a combination of parameters 
which creates a classifier with the highest accuracy. 
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2. Methods 

52 first episode schizophrenia patients and 52 healthy controls were scanned by 1.5T MR 
device. The resulting T1-weighted images were spatially normalized and segmented into 
tissue types. DWT was applied to the grey matter and white matter tissue segments and to 
Jacobians of deformations used for spatial normalization. From all the DWT coefficients 
only those surpassing chosen threshold were retained and from those only several 
coefficients with the most discriminative power were selected. These coefficients were used 
as an input for a linear support vector machines (SVM) classifier. The classification accuracy 
was estimated by leave-one-out cross-validation.  

The whole classification procedure from DWT transform onwards was performed multiple 
times with all combinations of following parameters: data modality, wavelet family, level of 
DWT decomposition, percentage of DWT coefficients retained, number of coefficients 
selected and SVM regularization parameter C. The computations were performed in software 
Matlab using Wavelet toolbox (http://www.mathworks.com/products/wavelet/) and Statistics 
toolbox (http://www.mathworks.com/help/stats/support-vector-machines.html) and realised 
in the CERIT-SC computing and storage facilities (https://www.cerit.cz). 

3. Results 
Analysis of classification accuracy of all combinations of the six examined parameters 
revealed complex nonlinear relations among them. The best combination of parameters 
achieved accuracy over 84% (with balanced values of sensitivity and specificity). These 
values were robustly estimated by 100 repetitions of stratified 52-fold cross-validation runs. 

4. Conclusion  
The achieved results (accuracy 84%) are comparable with the recent studies aimed at 
automated classification of patients with FES (accuracy 54% to 81%) (Mourao-Miranda et 
al., 2012; Zanetti et al., 2013; Kasparek et al., 2011; Takayanagi et al., 2011) while being 
distinguished by robust estimates of sensitivity and specificity in combination with correctly 
performed cross-validation and relatively large dataset. These facts show that wavelet 
transform provides a useful tool for extracting important information from medical images. 

Next step should be verification of the results and their transferability on an independent 
dataset and examination of other transforms similar to DWT potentially suitable for feature 
extraction in medical image classification. 
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Abstract 

The use of magnetic resonance imaging (MRI) of brain for diagnosis of neurological 
diseases like schizophrenia or multiple sclerosis (MS) is well 

. Therefore, it is 
 used algorithms which were 

spinal cord in T2-weighted images and separated spinal cord in diffusion-weighted 
These segmentations . Thus the algorithms 

 confirmed that the approach is correct. 
, which was enough for obtaining p

results. 

Key words  

Segmentation, Magnetic resonance imaging (MRI), Multiple sclerosis (MS), Spinal 
cord. 

1. Introduction 

Multiple sclerosis (MS) is a neurological disease which affects brain and spinal cord tissue. 
The clinical course of In general 
women suffer from MS more often than men Birnbaum, 2009). 
Although we can ,  
McDonald’s criteria are common  used for diagnostic . 

for MS from the findings of T1 and T2-weighted magnetic resonance 
imaging (MRI) scans of the brain. 
which represents a great technical challenge but also quite large unexplored area. 
The goal of this article is to show the first steps of segmentation of human spinal cord MR 
images. 

2. Methods 
-

 in sagittal plane and axial T2-weighted gradient-echo sequence, which was 
used for segmentations. For the DTI sequence, we used a single-shot echo planar technique 

ng 
gradient with 900 s/mm2 

-weighted gradient-echo scans. 

 FSL (the FMRIB softw   of MRI 
imaging data. 
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(BET) (Smith, 2002), linear and non-  (Jenkinson 
and Smith, 2001), diffusion toolbox (FDT) (Behrens et al., 2003) and so on (Jerkinson et al., 
2012). , the FSL does not 
support 

 

The s  now in the beginning  therefore, data  
onetheless, we are planning to examine around 40 patients with MS and the same number 

of   s’ DTI spinal cord imaging 
  

3. Results 
The first step is use of an automated method for segmentation of the 

spinal cord in T2-weighted images (T2-w) e successful in the 
middle part (Figure 1), but not in the (Figure 2 
and 3) 

 

Figure 1. -w)  

 

Figure 2
errors (T2-w) 

 

Figure 3
-w) 
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The first attempt to segment the spinal cord in diffusion-weighted ima
the B0 images  

 

Figure 4  

4. Conclusion 

 the prel separate 
spinal cord from the surrounding structures in T2-weighted and B0 images  , it 

 -weighted images. 
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Abstract 

The study is focussed on the pattern recognition, mainly on the use of the pattern 
recognition of the magnetic resonance imaging in diagnosis of schizophrenia. The data 
are preprocessed by the voxel-based morphometry and the inputs of the algorithms are 
smoothed gray matter images. There were two methods applied to the classification, 
linear discriminant analysis and support vector machine, whose accuracy is compared 
by the McNemar test. Particular steps of the pattern recognition are applied on two 
datasets. At first it is used on the simulated data of geometric shapes and subsequently 
analyzed on the real image dataset of the first episode schizophrenic patients and 
healthy controls from the University Hospital Brno. 

Key words  

Pattern recognition, MRI, schizophrenia, linear discriminant analysis, support vector 
machine.  

1. Introduction 
Schizophrenia is one of the gravest illnesses limiting quality of life of the patients and their 
families. Particular causes of this disease have not been described yet. Schizophrenia 
is diagnosed by the clinical interview with a psychiatrist. There is no objective method for 

small changes 
in morphology of schizophrenic’s brain tissue. However, these changes are not noticeable 
by unaided eye. If we discovered sufficient image analysis methods for proving 
schizophrenia, patients could be treated by earlier and more precise therapy hence they could 
earlier achieve the remission. The aim of the study is to compare two classification methods 
usable in diagnosing schizophrenia. 

2. Datasets 

There were two datasets analysed in the study. The first one was a dataset of simulated 
geometric shapes each about  . 
The second dataset contained (each about 748 
Fifty-two subjects were patients with schizophrenia and other 
controls. 
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3. Methods 

The pattern recognition process consists of three basic steps: data pre-processing, data 
reduction, and classification. The simulated geometric shapes were neither pre-processed nor 
reduced. MRI brain data were reduced by using selection of voxels which values were 
statistically significantly different between patients and controls (based on t-test with FDR 
correction for oth datasets were classified by linear discriminant analysis 

Objects were divided into testing and training subsets by validation technique leave-one-out. 
The classifiers were subsequently compared by the McNemar test (Kuncheva,  

4. Results 
were classified correctly. 

ied incorrectly. The results 
are shown in Table 1. The classifiers were compared by McNemar test with p-value 1, hence 
there is no statistically significant difference. 

Table 1. Results of the geometric shapes classification  

Classification 
method 

Accuracy  
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

    
    

In the classification of MRI data, better results for age-
adjusted and also not age-adjusted patients. As a result of comparing the results (shown 
in T - .814 for not age- . for age-
adjusted data were achieved. There is no statistically significant difference in both cases. 

Table 2. The results of the MRI data classification  

Classification method Accuracy  
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

 age not adjusted data 4 6 71.2 
 age not adjusted data 6 8 4 
 age adjusted data 72.1 69.2  
 age adjusted data 62.  61.  63.  

5. Conclusion 

Although better results were achieved in the 
significant difference between linear discriminant analysis and support vector machine on the 
given datasets. The best accuracy 72.1% is comparable with results of international studies 
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(Davatzikos et  however, it is 
necessary to try other methods for clinical use. 
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Abstract 

In this work the software tool mask_explorer is described and its practical use is 
demonstrated. It is designed for group fMRI analysis. The aim of the mask_explorer is 
to enable exploration of fMRI dataset and to prevent unwanted data loss, caused by 
automatic discarding of voxels with missing information even in one or few subjects. 
The user interface and application of the mask_explorer are shown and described. 
Subsequently we demonstrate usefulness of mask_explorer on two examples in study of 
Levodopa effect in patients with Parkinson’s disease. 

Key words  

fMRI, group analysis, dataset explorer, validity, statistical parametric mapping 

1. Introduction 
Functional magnetic resonance imaging (fMRI) is a commonly used method in neuroscience 
research. The group fMRI analysis enables testing hypotheses related to the target population 
or even on the whole population (Huettel et al., 2009). The tool mask_explorer is created for 
group dataset exploration. Because every brain has different shape and every subject contains 
intersubject differences in the scanned region of interest, some voxels intended for group 
fMRI analysis can miss information from some subjects involved in analysis. These voxels 
do not enter the group fMRI analysis and are automatically discarded. This could remain 
hidden from attention of the user. Currently, there are several reliable software tools 
available for fMRI data analysis, as e.g. SPM (Guillaume, 2014), FSL, and BrainVoyager 
(Goebel, 2014). However, these tools do not offer dataset exploration based on superposition 
of data masks of individual subjects with respect to region of users’ interest (region intended 
to infer group results). This is the reason for development of the tool mask_explorer. To 
show practical benefits of this designed tool, we demonstrate the use of mask_explorer in 
analysis of BOLD data in study of Levodopa effects in patients with Parkinson’s disease 
(PD). 

2. Methods 

2.1. Designed tool 
Mask_explorer provides user friendly graphical interface. The tool runs in the MATLAB 
environment and is compatible with SPM8 and SPM12b toolbox. The screenshot of 
graphical interface is shown in Figure 1. The left triad of views is used to display a variant of 
group mask where intensities represent number of subjects containing valid data at the 
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specific coordinate. This mask is estimated from loaded masks, cons or other standard 1-st 
level statistic SPM8 files. As individual mask we consider binary image with ones on 
positions containing information from measurement and zeros elsewhere. The mask_explorer 
counts and saves group binary mask (created as a conjunction of individual binary masks) 
and subject count file (created as a count of individual binary masks). The right triad of 
views is used to display one overlay file, especially con file, spmT file, beta file or raw-data 
file (e.g. echoplanar image). Overlay and background images are displayed in normalized 
MNI space. User can define coordinates of interest and mask_explorer displays unsuitable 
subjects for analysis on this coordinates. More details about mask_explorer are in this 
contribution (Gajdoš et al., 2012). In this work we introduce new version of mask_explorer 
with extended functions, e.g., batch mode for creating masks from BOLD data of whole 
dataset, import and export of lists of coordinates and suitable subjects. 

2.2. Data used 
In used Levodopa study we measured in 16 PD patients (disease duration 29 ± 6 months, age 
63.9 ± 6.9 years) on 1.5T MR scanner two sessions of task free data, each 150 scans. 
Repetition time was 3 s. Every patient was scanned in the OFF and ON medication con-
dition. We performed standard preprocessing steps (unwarp, spatial normalization, spatial 
smoothing) in SPM8. On this data we performed ICA analysis to identify spatial components 
of resting state networks, e.g. default mode network (DMN). Details are presented in 
Elfmarkova et al. (2014).  

4. Results 

4.1. Identification of failure in spatial normalization 
We used mask_explorer to create masks of preprocessed images. Then we identified failure 
in spatial normalization in data of several subjects as shown in Figure 1. Therefore we 
repeated spatial normalization step. This time we were successful with normalization of 
BOLD images to normalized MNI EPI template (offered in SPM8) instead of normalization 
to anatomical images of subjects. 

 

Figure 1. Interface of mask_explorer. On the left triad is shown revealed failure of spatial 
normalization, on the right triad is mask of one of subjects affected by this failure. Data in normalized 
MNI space are out of brain template. 
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Figure 2. ICA spatial component of DMN. Left part shows inactivation (16 PD subjects); in the right 
part was removed outlying subject (15 PD subjects). The same position is active. 

4.2. Identification of spatial abnormalities 
With fixed preprocessing step we again created masks and identified one outlying subject 
with abnormally scanned field of view. This subject was removed from analysis. Comparison 
of affected ICA component of default mode network is in Figure 2, greatest difference is on 
axial slice. After removing outlying subject we improved spatial information about parietal 
activation of the ICA component. False displayed inactivity was caused due to one outlier, 
not due to inactive state of part of parietal cortex. 

5. Conclusion 
We have shown the practical use of mask_explorer as the tool for group fMRI dataset 
exploration. We have described basic principles of this tool and mentioned new utilities 
implemented in actualized version of mask_explorer. We have demonstrated identification of 
problems in fMRI analysis using this tool. Its purpose is to enable searching for inconsistent 
data. The loss of useful information can occur in some cases, when the dataset is not 
attentively explored, e.g. false inactivation could be caused due to one outlier. To prevent 
these problems and false decisions about hypotheses we recommend using mask_explorer. 
The tool runs in the MATLAB environment. It is freeware under GNU license, accessible on 
web site of group fMRI Brno. 
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Table 1.  

Sp islands SigHunt Indegenius Alien Hunter 
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   2  
    33 

  9 12 11 
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