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Preface 

The 9th year of the Summer School on Computational Biology continues in a yearly tradition 
of informal summer schools focused on interesting aspects of biology, health care research, 
and biomedicine. This year’s theme is “Stochastic Modelling in Epidemiology”. Bearing in 
mind the broad definition of epidemiology: “Epidemiology is about the understanding of 
disease development and the methods used to uncover the etiology, progression, and 
treatment of the disease”, we can consider the scope of epidemiology in public health being 
as old as mankind itself. However, it definitely does not mean that epidemiology is out of 
fashion. In fact, the opposite is true. Epidemiology has an indisputable role in clinical 
research, where the methods of epidemiology still contribute to more and more detailed 
understanding of the processes associated with different diseases. Nowadays, modern 
epidemiology cannot be imagined without statistical methods that help us uncover the hidden 
associations between factors and diseases under study. Stochastic models belong among the 
main procedures used in this way. These models can help us in quantifying factor effect, 
adjusting for confounding variables, and studying complex correlation structures. Therefore, 
stochastic models in epidemiology represent an up-to-date issue that we hope will be of 
interest to all participants of the 9th year of the Summer School in Computational Biology. 

We greatly acknowledge financial support by the Ministry of Education, Youth and Sports of 
the Czech Republic; project CZ.1.07/2.2.00/28.0043 “Interdisciplinary Development of 
Computational Biology Study Programme” and national budget of the Czech Republic. 

On behalf of the programme and organizing committee, 

Brno, August 12, 2013 
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2. Measures of disease frequency 

stud
The population at risk

disease case
D

Prevalence

Prevalence 
N

- - point prevalence  

period prevalence. 

Incidence risk

Incidence risk 

N

N -

-
person-time at 

risk. incidence rate
proportion incidence rate

Incidence rate 
N

-

in
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Person

Year

1

2

3

4

5

Study drop-out

10 2 3 4 5 6 7

5 years at risk

3 years at risk

6 years at risk

7 years at risk

2 years at risk

23 years at risk in total

Incidence risk: 3/5
Incidence rate: 3/23

New case of disease

Figure 1

Mortality 

case fatality

Mortality rate 
N

-

Case fatality 
N

N

3. Measures of effect 
effect

s
C s

exposures

relative ratio –
absolute difference

3.1 Relative measures of exposure effect 
s

chi-
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W risk ratio odds ratio

Table 1.

  Exposed group Unexposed group Total 

Outcome 
present 

a b a+b 
c d c+d 
a+c b+d n 

RR

RR 
R

R

RR

dbb
caa

R
R

RR
/
/

RR RR

dbbcaa
RRSE

RRSERR RRSERR

odds

s OR

OR 

R
R

R
R

OR

bc
ad

db
caOR

/
/
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OR

dcba
ORSE

ORSEOR ORSEOR

OR is -
OR OR RR

***

Example 1  

 Smoker at entry  

Coronary event 
during follow-
up 

is
/
/RR

RR

RRSE

RR

RRL RRL

RRU RRU

RR -

/
/OR

OR

ORSE
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s OR

ORL ORL

ORU 2ORU

OR -

***

 

3.2 Absolute measures of exposure effect 

strength 
impact

3.2.1 Risk factors 

Risk difference excess risk attributable risk

–

db
b

ca
aRR

Excess fraction excess risk percentage attributable risk percentage

R
RR

R
RRR

3.2.2 Protective factors 

R R

Risk reduction absolute risk reduction

un –

ca
a

db
bRR

Prevented fraction relative risk reduction; vaccine efficacy

R
RR

R
RRR
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4. Types of epidemiological studies 

observational experimental

tics

Epidemiological
study

Observational

Experimental
(intervention)

Descriptive

Analytical

Ecological
Cross-sectional
Case-control
Cohort

Randomized controlled trials
Field trials
Community trials  

Figure 2

4.1 Observational studies 
descriptive study

analytical study
u

Ecological study

ecological fallacy

Cross-sectional study 

Case-control studies u
longitudinal cases

controls;
-
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OR -

Target
population

People without
exposure

People with
exposure

People with
the disease

(CASES)

People without
exposure

People with
exposure

People without
the disease
(CONTROLS)

RETROSPECTIVE INQUIRY

Figure 3 -

- cohort studies

PROSPECTIVE 
FOLLOW-UP

Target
population

People
developing

disease
People without

exposure

People without
the disease

People not 
developing

disease

People
developing

disease

People not 
developing

disease

People with
exposure

Figure 4
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Table 2.

Probability of Ecological Cross-sectional Case-control Cohort 

NA
NA

-up NA NA

4.2 Experimental studies 

in randomised controlled trials
Field trials

community trials

4.3 Sources of error in epidemiological studies 
Random error

i sample size

Systematic error (or bias) 
Selection bias

t Measurement bias
– –

-
confounding

5. Association vs. causation 

5.1 Association and confounding 

–
effect

association

17



in

?

confounding 
variable confounder

 

 

 

Carrying matches Lung cancer

Smoking

EXPOSURE DISEASE

CONFOUNDER

Associated with exposure, 
but not consequence of exposure

Associated outcome, 
independent of exposure

Figure 5

5.2 Causation in epidemiology 

Cause

necessary sufficient
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considerations for causation

Table 3.

-

-

-

6. Handling confounding in practice 

6.1 Design phase 
Randomisation s

Restriction
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Matching
-

6.2 Analysis phase 
stratification

stratum)

Standardisation -
–

i
i

i
ii

w w

Iw
I

wi i Ii i wi
i

-
–

Pooled estimates
- s

-
-

OR

i i

ii

i i

ii

MH

n
cb

n
da

OR

ai-di 2 T
i
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Example 2  -

COMPLETE STUDY GROUP 
Drinking status  

Lung cancer 33

-

SMOKERS 
Drinking status  

Lung cancer 24

-

NONSMOKERS 
Drinking status  

Lung cancer 

-

-
-

224

MHOR

***
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Regression modelling in biomedical studies 

Hynek Pikhart 

Department of Epidemiology & Public Health, University College London; 
e-mail: h.pikhart@ucl.ac.uk 

Abstract 

This contribution should help students to be able to: 

 Identify variables which might be included in the statistical analysis using 
regression modelling 

 Formulate a modelling strategy to build proper regression model 

 Use a logistic model to compare the log odds of disease in 2 groups and to 
estimate a crude odds ratio for a binary outcome 

 Perform statistical tests of the null hypothesis (= there is no association 
between the exposure and outcome) 

 Use a logistic model with one exposure – either continuous or categorical 
with 2 or more levels 

 Use a logistic model to examine the association between the exposure and 
outcome adjusting for confounders, assuming no effect modification, and 
explain the implications of such assumption 

 Use likelihood ratio test in multiple regression models 

 Use a logistic regression model that includes interaction parameters and 
interpret the parameters representing interaction in regression models 

Key words  

Epidemiology, regression modelling, multiple logistic regression, confounding, 
interaction 

1. Strategies of the analysis 

Introduction 

In this section you should think about various issues covered in different parts of statistical 
courses and about practicalities of the analysis related to the range of methods and 
techniques which you have discussed previously. We consider what steps in the analysis you 
need to take, what techniques you should use at the beginning of your data analysis, and how 
to design and formulate modelling strategy (including decisions on possible confounders and 
effect modifiers) 

Before you start the analysis 

You should have clearly defined outcome and the main exposure (or exposures) in your data 
(this should be clear from your hypothesis/hypotheses). In such situation you know which 
variables are the main variables of your interest. 
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First step 

You need to start with simple descriptive analysis – you should get to know your data, get 
the feeling for your data. You should firstly see what data are available in your dataset. You 
might then examine frequency distribution of the categorical data and you can try to 
graphically display your main variables. You can also look at the summary statistics of your 
continuous variables. Examining frequency distributions and graphs you should be able to 
identify possible errors in the data, find outliers in your data and see whether you have any 
missing data. This should also help you to decide how to categorise and/or regroup some 
variables. 

Second step 

Simple univariate analysis should be followed by bivariate analysis. Simple cross tabulations 
of two variables will give you the feeling for the crude associations in the dataset and will 
allow you to see how many events (cases of disease, deaths) you have in each category of 
exposure. The cross-tabulations may also help to find further potential errors in the dataset. 

Third step 

Use Mantel-Haenszel method for identification of possible confounders and effect modifiers. 
M-H method has possibly less power than regression technique however it gives you clearer 
results – it gives you stratum specific estimates in addition to overall pooled result, and it 
also gives you the test for effect modification. 

Final step 

Only as a final step, you should use regression modelling. By now you should have identified 
potential confounders and potential effect modifiers and you need to evaluate their effects in 
more complex models (than those available in M-H statistical technique). You need to 
consider whether the variable has any effect on the outcome, whether the variable has any 
effect on the association between main exposure(s) and the outcome. Before considering 
variable to be confounder you need to test whether such variable does not act as an effect 
modifier in the association between main exposure(s) and the outcome.  In large datasets, 
with large number of possible confounders, you need to consider which variables should be 
included in regression model, you need to assess the associations between potential 
confounders and effect modifiers, and you need to assess potential dose-response effects of 
variables.  

2. Logistic regression 

Introduction 

Logistic regression is more general method for analysis of binary outcomes than chi-square 
method since it allows the inclusion of continuous explanatory variables, inclusion of more 
than one exposure and the assessment of interaction (effect modification) between variables. 

Revision – odds and odds ratio 

Odds of disease and odds ratio can be defined in following way: 

For a defined population and time period, it is the number of cases divided by the number of 
people who did not became a case 
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Example of odds: 

 CVD 

No 18,954 

Yes 2,676 

Total 21,630 

 
The odds of CVD is calculated as: Odds = 2,676/18,954 = 0.14 

The examples shown in this section were calculated in statistical package Stata but most 
statistical packages can calculate similar outcomes. We are not interested in the syntax of 
commands – we need to focus on interpretation of results. 

 
Now, let’s calculate odds ratio 

 
Example: 

 TV watching  

Obesity <3 hours a day >= 3 hours a day Total 

Non obese 1,270 527 1,797 

Obese 409 219 628 

Total 1,679 746 2,425 

OR= Oddsexp/ Oddsunexp 

 Oddsunexp =409/1270=0.32  (odds of obesity among those watching TV <3hours a 
day)  

 Oddsexp =219/527=0.42 (odds of obesity among those watching TV >=3hours a day) 

 OR = 0.42/0.32 

 OR =1.29 
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And in STATA: 

 
Comparing: >=3hours a day of TV vs <3 hours a day 

We get the same odds ratio as in our calculation by hand 

However we get extra information (which we could calculate by hand as well): 

We get confidence interval – in this case 95% confidence interval – 1.06-1.57 

And we also get p value related to the appropriate null hypothesis – p=0.0095 

Exercise: Can you interpret these values? 

Let’s return to odds ratios. We can express formula in other way: 

 
We can now logarithm the formula and get 

 
Logistic regression model 

Modelling log odds is referred to as logistic regression, and the models are named as logistic 
models.  

Why do we use log odds when fitting statistical model: The reason for modeling log odds 
rather than risk or odds is that log odds can take any value (negative or positive) while risk 
lies between 0 and 1 and odds lies between 0 and infinity. When using statistical model it is 
easier to model a quantity which is unconstrained (which avoids the possibility to predict 
impossible values). 

If we come back to our formula: 

Log (oddsexp)=Log(oddsunexp)+log(OR) 

We will call Log(oddsunexp) as baseline (log odds of disease in the unexposed group) and 
log(OR) as the effect of exposure (our main interest). 

In summary, in logistic regression we fit regression model (with intercept and slope) for the 
log odds of disease as the outcome measure. 

The model is fitted using a mathematical technique called maximum likelihood which takes 
into account that the variation of proportion has a binomial distribution. 

A logistic regression with a binary exposure variable 

Example 

We want to see whether sex is risk factor for the all-cause mortality in population-based 
study: 
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Our outcome is all-cause mortality. Our exposure is gender. Let’s calculate odds of the 
outcome in both genders. 

Odds (women) = 31 / 119=0.26 

Odds (men) = 131 / 239 = 0.548 

OR (men vs women) = 0.548 / 0.26 = 2.11 

Now, we can calculate logistic regression in our statistical package. In Stata, output 
would look like this: 

 
The constant refers to the log odds in the baseline group. The coefficient gives the Maximum 
likelihood estimate of the parameter. 

ln odds= -1.345136+0.7438701 x sex (0”women” 1”men”) 

ln odds (unexposed=women) = -1.345+0.744 x 0= -1.345 

odds (unexposed) = exp(-1.345)=0.26 

ln odds (exposed=men) = -1.345+0.744 x 1= -0.601  

odds (exposed) = exp(-0.601)=0.548 

OR = odds(exposed)/odds(unexposed) = 0.548/0.26 = 2.10  

If we take the estimate from the STATA model, 0.74387, we will see that  

exp (0.74387) = 2.10 

STATA can provide the Odds Ratios (OR) which are more familiar and easy to interpret. 

27



 
We can see that we got the same OR as in previous calculation. 

Similarly, we can calculate 95% confidence interval from logit model: 

95%CI for OR = exp(0.2948) to exp (1.1928) = 1.34 to 3.30 which is identical to the 95% CI 
from logistic model. 

Finally, we can use Z statistic (that can be compared with a Normal distribution) for 
significance testing of the strength of the association: 

We use the Wald test to test the null hypothesis that the true parameter value is 0 (i.e., there 
is no association) 

z statistic is calculated as 

Z = coefficient/SE 

Z = ln (OR) / SE (lnOR) Here we must use coefficient and SE from original, logit 
model! 

We compare z with a Normal distribution 

For our example 

 Z = 0.744/0.229 = 3.25 

p=0.001 we reject the null hypothesis of no association 

Testing for association using the Likelihood ratio test 

For each logit regression model you can calculate “log likelihood” statistics 

The Likelihood Ratio Test (LRT) – 

 LRS (likelihood ratio statistics) = 2 (L1-L0), where L1 is maximised log likelihood 
of model with variable you want to test and L0 is maximised log likelihood of 
model without the variable 

 LRS is distributed as chi-square distr. on 1 df (if we test effect of 1 variable, later 
we will try to test composite effect of more variables) 
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STATA: 

 
 

When we compare model including variable sex and model without this variable, Likelihood 
ratio test again shows importance of sex on mortality in this dataset. 

Important points: 

- LRT can be used even in more complicated situations (we will see later) 

- We can only use LRT test if both compared models have same number of 
individuals used in regression analysis (you must check that there are no missing 
values in variable(s) tested!) 

- Two compared models must be nested (exposures used in less complicated model 
are subset of exposures used in more complicated model) 

Logistic regression for the comparison of more than 2 groups 

We have categorical exposure that has more than two categories. Let’s come back to our 
example and use variable age. We have 3 age groups (50 years and younger, 51-65, older 
than 65) and we want to see the effect of age (grouped to 3 categories) on all-cause mortality. 

Firstly, let’s tabulate two variables: 
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We can see that age seems to be associated with mortality (10% of dead individuals in the 
youngest age group, 33% in the middle group and 47% in the oldest group). Let’s run 
logistic regression: 

 
_Iagegp_2 and _Iagegp_3 are indicator variables created by STATA for each non-baseline 
value of categorical variable for the purposes of analysis. Indicator variable take only values 
0 and 1. 

_Iagegp_2 is an indicator variable that equals 1 for agegp=2 and equals 0 otherwise 

_Iagegp_3 is an indicator variable that equals 1 for agegp=3 and equals 0 otherwise 

So, the 4.28 is the odds ratio comparing individuals in age group 2 (51-65 years) vs those in 
age group 1 (baseline; 50 and less). The remaining columns have the same meaning as 
previously, so we can see that 95% CI for OR is 2.33-7.86, and OR is statistically 
significantly different from 1.00 (no association). 

Similarly, 7.99 is the odds ratio comparing individuals in age group 3 (65+) vs those in age 
group 1 (baseline)!  

The estimated OR always compares appropriate category of the variable with the baseline! 

So far, we have tested whether mortality in age group 2 differs from mortality in age group 1 
and whether mortality in age group 3 differs from mortality in age group 1. No we are 
interested in composite effect of age. In other words, we want to know whether age is 
statistically associated with mortality. We need to use likelihood ratio test. 
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We should repeat several basic points: 

- 2 models must be nested  

- Same number of subjects in both models 

- degrees of freedom = 2 

= equal to difference in number of variables between 2 models 

(we had 2 dummy variables for agegroup, so 2 d.f.) 

Logistic regression with quantitative measure of exposure 

We can have continuous variable as exposure (systolic blood pressure, blood cholesterol, 
height). We want to estimate the effect of continuous exposure on binomial outcome. 

We will use diastolic blood pressure (DBP) in our example: 

Firstly, let’s check whether we have DBP values for all individuals and whether we do not 
have any outliers (unusually small or large values): 

 
We can see that we have reasonable values for all 520 subjects. We can now run regression 
model: 
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We can say that odds of mortality increases 1.11-times with 1 unit increase in diastolic blood 
pressure. OR=1.11 represents the effect of DBP per 1 mmHg increase in DBP. We can now 
use 95% CI and p-value in the same way as in previous examples. 

If we want to estimate OR for 10 units increase in DBP the effect will be (1.11)10 = 2.83 

3. Multiple logistic regression 
Logistic regression allows using several confounding variables at the same time, allows 
inclusion of possible effect modifiers and allows using continuous variables as confounding 
factors. 

Adjusting for confounding using multiple logistic regression 

Let’s return to our example (sex, age and diastolic blood pressure as possible risk factors for 
all-cause mortality) 

We want to fit a logistic regression model including terms for both sex and age group at the 
same time. 

We can use following STATA command 

 

 
How should we interpret such results? 

The parameter estimate for sex (odds ratio 3.51) represents the odds ratio for the effect of sex 
(men vs women) adjusted for any confounding effect of age group. In simple way we can 
imagine that we create separate tables and calculate odds ratios of the effect of sex on 
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mortality for each age group, and we make pooled estimates ~ weighted average of stratum 
specific odds ratios. 

The age parameters can be interpreted in similar way: ORs of 6.29 and 11.12 represent the 
odds ratios for the effect of age (51-65 vs 50- and 65+ vs 50-) on all-cause mortality adjusted 
for any confounding effect of sex. 

We need to mention one important assumption – we assume that there is no interaction/effect 
modification between the effects of age group and sex (M-H methods provides us with 
reminders about the effect modification while logistic regression does not). In other words 
we assume that the effects of sex and age group on mortality are independent (or, in other 
words, we assume that the effect of sex on all-cause mortality is same in all categories of age 
and the effect of age on all-cause mortality is same in both genders). 

Hypothesis testing in multiple logistic regression 

We can test different hypotheses in multiple logistic regression. 

a) the composite effect of age on mortality (when sex taken into account) 

We want to test following null hypothesis: there is no association between age group and 
mortality after taking sex into account. We will use likelihood ratio test for testing this 
hypothesis. We will use similar set of commands as in last session. 

 

 
The result of the likelihood ratio test tells us that there is very strong evidence against the 
null hypothesis (p<0.001) – there is strong evidence that, taking sex into account, there is an 
association between age group and odds of death.  
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This LRT test tells us whether there is evidence that a variable is a risk factor – it is not a 
test for whether variable is a confounder!  

b) the composite effect of age and sex on mortality 

This time, we want to test following hypothesis: there is no composite effect of age group 
and sex on mortality. We will again use likelihood ratio test for testing this hypothesis but we 
will compare different models: 

 

 
The result of the likelihood ratio test tells us that there is very strong evidence against the 
null hypothesis (p<0.001) – there is strong evidence that there is composite effect of sex and 
age on all-cause mortality. 

This type of hypothesis testing is particularly useful when we have blocks of variables of 
similar type or origin (for example several SES measures or several health behaviours) and 
we want to test their composite effect on health outcome of interest. 

Interaction in logistic regression 

So far, we needed to make the assumption that the effect of the exposure is the same (or 
similar) across the strata (=for different categories of confounder). We need to test such 
assumption in regression model (you may remember test for heterogeneity of odds ratios in 
Mantel-Haenszel analysis). 

Let’s return to our example. For simplicity, let’s combine people older than 60 years into one 
group = we will have only 2 age groups. We want to test whether the effect of age group on 
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mortality is same among men and women (we want to test whether stratum-specific ORs are 
homogenous or not. 

As always, we will construct 2-way tables first: 

 
We can calculate stratum-specific odds ratios 

 

 
These two ORs do not seem to be similar but we need to test this difference formally – it is 
possible for example that this difference is seen just because there are relatively few younger 
women in the sample who have already died (and we can see that 95% CI for the OR in 
women is extremely wide). 

We need formal test of null hypothesis: stratum specific ORs are homogenous (there is no 
difference between stratum specific odds ratios) 
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Firstly we run the more complicated model = model assuming interaction between age and 
sex = model assuming that the effect of age on mortality depends on sex (and also assuming 
that the effect of sex on mortality depends on age) 

 

 
Then we ran simpler model = model assuming no interaction between age and sex 

 
Finally we use likelihood ratio test to compare these two models 

 
The result of likelihood ratio test tells us that there is evidence against null hypothesis 
(p=0.005) and we should not use model assuming independent effect of age and sex on 
mortality = we should report stratum specific odds ratios of the effect of age and sex on 
mortality: 
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Interpretation: 

 Among younger people (60 years or less): the odds ratio for the effect of gender 
(men vs women) is 9.80 (_Isex_1) 

 Among women: the odds ratio for the effect of age (older vs younger) is 18.06 
(_Iagegp_2) 

 Among older people (above 60): the odds ratio for the effect of gender (men vs 
women) is 9.80 multiplied by 0.156 (IsexXagegp_2) = 1.53 

 Among men: the odds ratio for the effect of age is 18.06*0.156 = 2.82 

Interpreting interaction terms 

If there is important interaction in the model, it does not make sense to report the effect of 
the exposure on the outcome adjusted for confounder – the proportional odds assumption is 
not correct. We must report stratum-specific exposure effects (in both directions of 
interaction). 

We will continue with confounding and interaction in multiple logistic regression case study 
session. 
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Public sources of cancer epidemiology 
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Institute of Biostatistics and Analyses, Masaryk University, Brno; e-mail: 
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2. Sources of information on cancer epidemiology  
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2.1. Sources of cancer epidemiology data in the Czech Republic 
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2.1.1. SVOD - System for Visualization of Oncology Data 
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Figure 1
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2.2. Sources of international cancer epidemiology data 
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2.2.2. WHO Cancer Mortality Database 
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2.2.4. European Cancer Observatory 
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4. Models for right-censored univariate survival data 

4.1. Non-parametric survival models 
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4.2. Parametric survival models 
4.2.1. Choices for parametric modeling 

-

- -

(

4.2.2. Weibull parametric survival model 

-

-
(x x S(x

= –

- Y X Y
X μ W extreme values distribution

– Z
Y X

(x|Z

– –

Weibull baseline hazard (x
Z

50



general population
Weibull proportional hazards model x

Z Z

Weibull parametric model

survreg
scale parameter

exponential
Rayleigh model

μ

hazard ratio relative risk

51



4.3. Semi-parametric survival models 
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Hazard rate functions driven by finite-state and
continuous-state stochastic processes
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Abstract

The aim of this contribution is to present basic mathematical knowledge on how the

hazard rate of the first hitting time is related to the underlaying stochastic process.

We would not give complete mathematical treatment, but rather a practical view

suitable for modelling and performing simulations.

Keywords

Hazard rate function, first hitting time, multi-state model, continuous-state model.

1. Random process, first hitting time and hazard rate

This contribution is aimed to be used as an introductory text for better understanding

Chapter 10 of book (Aalen et al., 2010). It uses similar examples but in more details to

show to the reader that, despite the more difficult mathematical background, the appli-

cation and interpretation of such models is tractable. We hope it could be useful to the

readers who are interested in the application of stochastic processes for modelling the

hazard rate functions understood as the risk to attain some specific state of the process.

It is assumed that the reader already has some knowledge of the basic mathematical

notation used in the survival analysis and of its interpretation.

Random process (or stochastic process) X(t) can be understood as a sequence of ran-

dom variables indexed by instants of time, t. This means, that for each time t, X(t) is a

random variable with some probability distribution and statistical characteristics. If the

index set is continuous, usually given as interval [0, ∞) or [0, T] for some fixed T > 0,

we call it continuous-time process. If the index set consists only of separated instants

of time (finite or countable), the process X(t) is called discrete-time process. Another

classification of random processes is by the set of possible values, so called state space.

If the state space is a finite or countable set (for example, {1, . . . , 5} or {1, 2, . . . }) the

process X(t) is called a chain. If the state space is continuos we say X(t) is a random

process with continuous states.

A special class of random processes consists of so called Markov processes (or Markov

chains). Markov processes are memoryless random processes. It means, that for fixed

instant of time t0, the future evolution of such a process X(t) depends on the present

value X(t0), not on the history. This mathematical fact is mathematically written in

terms of the probability as

P[X(t0 + h)|X(t), 0 ≤ t ≤ t0] = P[X(t0 + h)|X(t0)]

and says that the probability distribution of the random process X(t0 + h) at every

future time t0 + h, conditioned by the knowledge of the past values of the process,

is the same as the distribution conditioned only by the knowledge of the present value
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X(t0). Markov processes (and Markov chains) are, in general, the most studied random

processes with relatively simple practical application on data or for simulations.

We can think the particular states as different stages of a disease or different therapies.

Absorbing state is a state with no further possibility to change the state. If there is no

possibility of relapse, the heal of the disease will be represented by an absorbing state.

The other states correspond to the survivors. We focus on the hazard rate function,

which is an intensity of the survivors at risk of reaching the absorbing state. We derive

the dependency of the the hazard rate as on time we examine the so called first hitting

time to reach the absorbing state. The first hitting time is a random variable, hence

having some probability distribution for which the hazard rate function can be calcu-

lated. It will be seen how the initial distribution of the population among the states of

the model influences the shape of the hazard rate function.

2. Hazard rate in model with multiple states

Now, we focus on a finite state Markov chain with a single absorbing state. We take

a bit simpler example than that shown in (Aalen et al., 2010) and we show how it is

possible to obtain different shapes of the hazard rate in this model.

1 2 3 4 5

β2 β2 β2

β1β1β1β1

Figure 1. Transition scheme of the model from the example. State 1 is absorbing.

Constants β1 and β2 are the transition intensities.

Consider the continuos time Markov chain with the state space 1, . . . , 5. The transition

scheme of the specific chain is shown in Fig. 1. Each box represents a state of the

chain and the arrows indicate the possible transitions. The parameters β1, β2 are the

transitions intensities for moving one state down or up, respectively. State 1 is the

absorbing state, states 2–4 are states of the survivors. The specific event of our interest

is to reach the absorbing state 1. With respect to this event, it could be seen, that the

population at risk is concentrated in state 2 only.

Properties of the Markov chain with continuous time can be described by the matrix of

transition intensities, which in our example has the following form,

Q =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
β1 −(β1 + β2) β2 0 0
0 β1 −(β1 + β2) β2 0
0 0 β1 −(β1 + β2) β2
0 0 0 β1 −β1

⎞
⎟⎟⎟⎟⎠ .

The element in row i and column j of Q gives the transition intensity from state i to

state j, for i �= j. The elements on the diagonal of Q are calculated in such a way, that

the row sums are equal to zero. The zero values of all the row sums of matrix Q is the

typical property of the matrix of transition intensities.
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The meaning of the transition intensities is better seen when working with a discretized

version of the chain. Suppose that the process can evolve only in discrete time steps of

given (small) length Δt > 0. Let us calculate a new matrix

P = (I + Q)Δt,

where I stands for the identity matrix of appropriate dimension. If Δt is short enough,

all the elements of P have values between 0 and 1, and therefore P can be understood

as a matrix of transition probabilities. The value of the element of P in ith row and jth
column gives the probability, that an individual in state i at time instant t will move to

new state j during the (short) time interval (t, t+Δt]. Typical property of the transition

probability matrix is that all its rows sum to one; such a matrix is called stochastic

matrix. Let us choose β1 = 1 and β2 = 1.5 in our model and let us calculate P for the

time interval Δt = 0.02. We obtain

P =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0.02 0.95 0.03 0 0

0 0.02 0.95 0.03 0
0 0 0.02 0.95 0.03
0 0 0 0.02 0.98

⎞
⎟⎟⎟⎟⎠

We see, e.g., that the probability, that an individual in state 2 will move to state 1 during

the time interval of length Δt = 0.02 is equal to 2 %. Analogously, an individual in

state 5 will not change its state with probability 98 %. State 1 is absorbing, which is

indicated by the probability of 100 % on the diagonal of the matrix.

The advantage of P is that it gives a simple way to calculate the probability distri-

bution of the population among the states at every multiple of Δt, hence at times

0, Δt, 2Δt, 3Δt, . . .. If Δt is chosen short enough, we obtain a pretty good approxi-

mation of the original continuous-time Markov chain. Let p(k Δt) stand for the proba-

bility distribution of the population at time instant k Δt. It is a vector consisting of the

probabilities that a randomly chosen individual at time k Δt will be in particular states

from 1 to 5. Of course, the probabilities in this vector always sum to one. Similarly, let

us denote the initial distribution (at time 0) as p0. Then, we have the general formula

p(k Δt) = p0 Pk, k = 0, 1, 2, . . . ,

where Pk stands for the matrix power of order k, or, alternatively, the recurrent formula

p[(k + 1)Δt] = p(k Δt)P, k = 1, 2, . . . .

Now, we can easily perform a simulation of such a process by repeating the calculation

according to the last equation for k = 1, 2, . . .. Then, obtained values of the probability

distribution of the population among the states can be plotted as functions of time.

Resulting distributions obtained from our model are depicted in Fig. 2 for two different

settings of the initial distribution of the population. We see that the proportion of the

population at state 1 grows in time. The proportions of the population in the other states

2–4 exhibit either decreasing behaviour or it increases at first, reaches a maximum

and then decreases as the time grows. The proportions od states 2–4 tend to zero

asymptotically, whereas the proportion of state 1 tends to one.
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Figure 2. Probability distribution, p(t), of the population in the particular states in

time, t: state 1 (thin solid increasing), state 2 (solid), state 3 (dashed), state 4 (dot-

ted) and state 5 (dash-dotted). On the left hand side for initial distribution p0 =
(0, 1, 0, 0, 0) (initially in state 2), on the right hand side for uniform initial distribu-

tion among the states 2–4, p0 = (0, 0.25, 0.25, 0.25, 0.25).

Very interesting property of these models is so called quasi-stationary distribution of

the population in time. The work quasi-stationary indicates that it is not stationary in

general. Only the distribution of the part of the population which survives (hence did

not achieve the absorbing state) converges to some stable distribution. To obtain the

distribution of the survivors is very easy: we chose only those values of the vector

p(k Δt) which correspond to the survivor (nonabsorbing) states and we normalize it in

order to sum to one again. The resulting survivor distribution is denoted by s(k Δt). In

our example, the non-survivors are collected in state 1, hence our s(k Δt) is obtained

by taking only the last 4 values from s(k Δt) by normalizing the new vector (of length

4). The result is plotted in Fig. 3. We observe the typical behaviour of the distribution

of the survivors, it gets stabilized when the time grows. This is not in contradiction with

the proportions plotted in Fig. 2: the proportions of the survivors in the whole popula-

tion tend to zero, but their ratios are kept asymptotically constant. The limiting values

of s(t) can be calculated as the normalized elements of the left eigenvector (which

is the common eigenvector of the transposed matrix) corresponding to the dominant

eigenvalue (i.e. the least absolute eigenvalue) of the submatrix of Q of only the survivor

states. In our example, we take the matrix Q without the first row and first column and

calculate its eigenvalues: the least one in absolute value is 0.067 and the correspond-

ing left eigenvector is equal to (0.114, 0.277, 0.504, 0.810). By normalization of this

vector we get the limiting survivor distribution s(∞) = (0.067, 0.163, 0.295, 0.475),
which are plotted in Fig. 3.
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Figure 3. Probability distribution, s(t), of the survivors in time, t: state 2 (solid), state

3 (dashed), state 4 (dotted) and state 5 (dash-dotted). The layout corresponds to the

conditions in Fig. 2.

We are interested in the event, when the individuals come to the absorbing state (state

1 in our example). This links the hazard to the distribution of risk for the survivors. If

the event of our interest is to pass the individuals to the absorbing state 1, the hazard

rate, λ(t), at time t is given by summing the probability that an surviving individual

is in state j at time t multiplied by the intensity of transition from state j to state 1 for

over all the survivor states. This rather complicated formula has simple mathematical

notation in form of a scalar product

λ(k Δt) = s(k Δt)′ r,

where r is the first column of the transitions intensities matrix Q without the first

element; such a vector r gives exactly the intensities of transition from all the survivor

states to the non-survivor (absorbing) state 1. In our example, according to its schema

and matrices Q and P, we see that this can happen only by individuals in state 2 passing

to state 1. The resulting hazard rates λ as functions of time are shown in Fig. 4. Note

especially the different shapes in accordance with different initial distributions of the

population. But, we see that the hazard rate converges to the unique value regardless

on the initial distribution of the population. This limiting value can be again easily

computed as the absolute value of the dominant eigenvalue of the submatrix of Q
corresponding to the survivor states only. In our example, this limiting value is equal

to λ(∞) = 0.067 and one can check it in Fig. 4, too.
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Figure 4. Hazard rates, λ(t), (risk to attain the state 1) as functions of time, t, for

different initial population distributions: p0 = (0, 0.25, 0.25, 0.25, 0.25) (thin solid),

initially in state 2 (solid), state 3 (dashed), state 4 (dotted) and in state 5 (dash-dotted).

The right hand side figure is a detail of the left hand side plot.

3. Hazard rate in model with continuous state space

We continue with the examination of the shape of the hazard rate function driven by

a stochastic process. But now, we take the underlaying process with continuos state

space. Specifically, let the state space of the process is a positive half line [0, ∞) with

an absorbing state 0 which will represent the event of our interest. We skip the usually

mentioned random walk and start with a very specific and deeply studied random pro-

cess called Brownian motion with drift as mentioned in (Aalen et al., 2010). We use

this process analogously to describe the evolution of the probability distribution of the

population among the state space, which is now assumed to be the interval [0, ∞).

Brownian motion (or Wiener process) with drift is random process X(t) given by the

formula

X(t) = c − μ t + σ W(t), t ≥ 0.

The parameter c > 0 is the initial value of the process, μ > 0 is so called drift pa-

rameter and σ > 0 is a parameter which controls the amount of randomness involved

in the process. The variable W(t) is a special random process, which is called stan-

dard Wiener process (or standard Brownian motion). Its name is usually referred to

Robert Brown due to the similarity of the graph of this process with the trajectory of

pollen grains he had observed. This random process W(t) has very special mathe-

matical features, let us mention the most important: for every fixed time t > 0, the

random variable W(t) has normal distribution with zero mean and variance equal to

t, the trajectory (sample path) of W(t) is everywhere continuous but nowhere differ-

entiable. The properties are a bit unusual and in some sence in contradiction with our

common thinking. The property of the variance means that the time variable some-

how propagates into the value of the process, heuristically written as [ΔW(t)]2 ≈ Δt.
The nondifferentiability brings causes many problems with the mathematical treatment

of the process. Roughly said, when working with Brownian motion (with or without

drift) we can not use the common calculus. Instead, so called stochastic differential,
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stochastic integral and new rules to deal with such a process must be given. For details,

we refer the curious reader to some textbook of stochastic analysis, e.g. (Karatzas and

Shreve, 1991).

Nevertheless, the Brownian motion with drift was proved to be an underlaying process

for some known shapes of the hazard rate function. And not only in the survival anal-

ysis, but also in the theory of reliability, mathematical finance (used for description of

the stock prices) in neurophysiology (used for description of the membrane potential).

Despite the different mathematical treatment, it is relatively tractable to work with the

Brownian motion with drift in simulations. The basic idea uses the property of the

normal distribution of the standard Wiener process and is based on the generation of

short-time increments, ΔX(t), from which the resulting process X(t) comes as their

cumulative sum,

X(0) = c, X(t + Δt) = X(t)− μ Δt + σ
√

Δt ε(t), t ≥ 0.

Here, ε(t) are elements of a random sample taken from standard normal probability dis-

tribution. We choose a time interval of length Δt and generate a large sample ε(t) from

the standard normal distribution. Then the procedure in the last formula is repeated

in a loop, until the values of the process X(t) for required time length is obtained. If

Deltat is short enough, the result is good approximation of the theoretical Brownian

motion with drift.

We generate many, say at least 1000, trajectories with the same parameters. Because

we are interested in particular event, entering the absorbing state 0, we calculate so

called first hitting time to zero boundary,

τ0 = inf {t ≥ 0; X(t) ≤ 0} ,

from each trajectory of X(t). In this way we obtain a sample of the first hitting times

to zero boundary and we can plot its histogram and estimate its probability density

function. A plot of few trajectories and a histogram of the sample first passage times

τ0 are shown in Fig. 5.
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Figure 5. Left hand side: eight trajectories (sample paths) of the Brownian motion

with drift. Parameters are c = 2, μ = 1 and σ = 1. Right hand side: histogram of the

sample of the first hitting times of 1000 trajectories of the Brownian motion with drift
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with the same parameters. The solid curve is the corresponding probability density

function of the inverse Gaussian distribution.

It was proved that the first hitting time, τ0, to the zero absorbing boundary has inverse

Gaussian distribution. For comparison, the theoretical probability density function is

added to the histogram in Fig. 5. It is given by equation (Chhikara and Folks, 1989;

Karatzas and Shreve, 1991)

f (t) =
c√

2 π σ2 t3
exp

[
− (c − μt)2

2 σ2 t

]
.

The corresponding survival function is equal to (Chhikara and Folks, 1989)

S(t) = Φ
(

c − μt√
σ2 t

)
− Φ

(−c − μt√
σ2 t

)
exp

(
2 μ c
σ2

)
.

Both the functions f (t) and S(t) for some different different initial values c are shown

in Fig. 6.
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Figure 6. Probability density functions, f (t), (left hand side) and survival functions,

S(t), (right hand side) of the inverse Gaussian distribution with initial value c = 2
(solid), c = 1 (dashed), c = 3 (dotted) and parameters μ = 1 and σ = 1.

The corresponding hazard rate λ(t) at time t is equal to λ(t) = f (t)/S(t). The shapes

of the hazard rate λ(t) in dependency on time t are shown in Fig. 7. The hazard rate

functions for the Brownian motion with drift exhibit the same stability phenomenon

as for the finite-state models. Regardless of the initial value, c, they all converge to

the same limiting hazard. If c is close to zero, we get a decreasing hazard rate. For

intermediate values of c one gets a hazard which first increases and then decreases; this

is the typical shape of the hazard rate for many continuous state space models. For very

large large c, an increasing hazard rate is obtained.

64



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

time

ha
za

rd
 r

at
e

Figure 7. Hazard rate functions, λ(t), (risk to attain the state 0) for the same three

settings of the initial value and the parameters as in Fig. 5.

Note that the shapes of the hazard rate are very similar to those from the finite state

model in the previous section. That is one of the objectives that the continuous state

space processes play an important role in the survival analysis. These models are

although more difficult to mathematically treat, however, they offer more flexibility

to model the shape of the hazard rate, especially when other so called diffusion pro-

cesses (Brownian motion with drift is one example, another well studied is Ornstein-

Uhlenbeck process) are used for the underlaying stochastic process.

At the end of this contribution, we show how simple it is to randomly generate the

trajectories of the Brownian motion with drift. We hope it would simplify the way the

reader needs to begin to discover the behaviour of the Brownian motion with drift and

to obtain the sample of the first hitting times to zero boundary by the simulations. We

present the following codes in R language (R Development Core Team, 2012). The

first function takes the parameters c, μ, σ, Δt, T on its input and returns a vector of the

values of X(t) for time instants from 0 to T with the step of length Δt.

Bmwd <- function (c, mu, sigma, dt, T) {
# number of increments
n <- ceiling (T / dt)
# generating of random increments
dW <- rnorm (n, mean = 0, sd = 1) * sqrt (dt)
# increments of Brownian motion with drift
dX <- sigma * dW - mu * dt
# cumulative sum if increments (initial=c)
X <- cumsum (c (c, dX))
return (X)
}

The second function calculates the first hitting time to zero absorbing boundary from

the trajectory of X(t); its parameters are the vector of X(t) and the time step Δt. We

note that this leads to a rough approximation of the first hitting time. More precise

method for the simulation is given in (Giraudo et al., 2001).

Fht <- function (X, dt) {
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# find indices wheres trajectory<=0
hitting.times <- which (X <= 0)
# return NA if there is no such index
if (length (hitting.times) == 0) return (NA)
# else return the first time
return ((hitting.times[1] - 1/2) * dt)
}
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Abstract 

Determination of appropriate number of subjects to be included in an epidemiological 
or clinical study is one of the most important tasks in designing of the study. The 
number of subjects enrolled has direct relation to probability of true significant results 
(statistical power), to duration and to costs of the study. The sample size is estimated in 
order to achieve sufficient power which depends on expected difference between 
compared groups, type of analyzed variable (binary, continuous, censored), type of 
hypothesis (superiority, non-inferiority, equivalence), and other factors, e.g., variability 
of data. Further, understanding of factors which affect the power of statistical analyses 
is also important in statistical considerations and interpretations of statistical results. In 
this article the main aspects of sample size calculation and power analysis are explained 
and practical examples are presented. 

Key words  

Sample size, power, clinical research 

1. Introduction 
Sample size, power of statistical test (i.e. probability of rejection of H0 if it is really false) 
and difference between compared groups (e.g. treatment effect in placebo-controlled trial) 
are three closely related milestones of inferential statistical analysis.  

It is obvious that sample size estimation is particular in designing of studies which compare 
two groups; however, the sample size should be justified also in case of observational studies 
in order to achieve sufficient precision of characteristics’ estimates. 

The sample size/ power calculation and consideration is critical in designing of the clinical 
trial; however, is also important in interpretation and justification of statistical results, 
especially in lack of significant result. 

2. Basic statistical consideration  

2.1. Type I, Type II error, alpha and beta 
Rejection of H0 if the hypothesis is true is called type I error. Probability of type I error is 
called alpha (level of significance). 

Not rejecting of H0 if the hypothesis is false is called type II error. Probability of type II error 
is called beta. 

Power is defined as 1-beta, i.e. probability of rejection of H0 if the hypothesis is false. 
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Table 1.Type I and II error 

 Reality 

Results of test H0 is true H0 is false 

H0 not rejected Correct conclusion Type II error (beta) 

H0 rejected Type I error (alpha) Correct conclusion (1-beta) = power 

 

2.2. Three communicating vessels (effect – power – sample size) 
The most common task of sample size calculation/ power analysis is related to comparison of 
two groups, i.e. testing of the following hypotheses: 

 VS. 

 

The sample size is mainly affected by the following factors: 

1. Level of significance 

2. Power 

3. Effect (difference in compared groups – treatment groups, males vs. females, with vs. 
without disease,…) 

Level of significance 

Sample size is highly dependent to the level of significance; however, the level of 
significance usually given by guidelines. Standardly used level of significance is 0.05. In 
some cases level of significance 0.01 could be required. In case of multiple testing the level 
of significance needs to be adjusted by appropriate manner (e.g. using by Bonferroni 
correction).  

Effect, power and sample size 

Difference between the groups (effect), power of statistical test and sample size are very 
closely related. First, the higher sample size gives us higher power to reject the H0, i.e. we 
will have higher probability to demonstrate the difference between groups if it really exists 
(Figure 1). Second, higher effect gives us higher power to reject H0, therefore, lower sample 
size is necessary (Figure 2, Figure 3). 

With very high sample size we will be able to demonstrate significant difference between 
groups although size of the difference could be very small. Important is to demonstrate 
meaningful (e.g. clinically relevant) difference as statistically significant, especially for non-
inferiority and equivalence studies the determination of margin is one of the critical point 
during designing of the study (see section 3).  

Sample size of clinical trials is usually calculated to achieve power 80% or 90%. 
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The relationship effect-power-sample size needs to keep on mind also during analysis and 
interpretation of statistical results. In epidemiological research, the large sample sizes are not 
exceptional. In order to make appropriate interpretation of the results the size of the 
demonstrated effect needs to be taken account. Demonstration “only” statistical significance 
is not sufficient. In case of lack of power to demonstrate statistical significance it is useful to 
perform power analysis on given data in order to see which power was achieved and how 
many subjects would be needed to achieve e.g. 80% power.  

 

Figure 1. Relationship between sample size and power of t-test for fixed effect 

 

Figure 2. Relationship between effect and sample size for fixed power 80% and 90% of t-
test 
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Figure 3. Relationship between effect and power t-test for fixed sample size 50 and 80 
subjects 

3. Role of sample size/ power calculation in clinical trials and in 
interpretation of results of statistical analyses 

Sample size/ power calculation in designing of clinical trials 

The number of subjects/patients to be enrolled in the clinical trial needs to be fixed before 
the start of the study. Thus, the sample size needs to be determined in order to enable 
sufficient power to achieve objective of the trial with given design. In general the designing 
of the clinical trial consist of the following steps: 

1. Determination of “clinical” hypothesis, i.e. what we would like to show, demonstrate, 
determine in our study 

2. Selection of primary endpoint (clinical parameter on continuous scale like blood 
pressure, level of glycosylated hemoglobin, incidence of disease/ cardiovascular 
event, relapse of disease, quality of life) 

3. Selection of design (parallel, cross-over) 

4. Specification of the statistical hypothesis, methods of analysis 

5. Assumptions based on results previous studies, review of articles, analysis of 
epidemiological data  

6. Sample size calculation (drop-out needs to be add up) 

7. Consideration whether it is possible to enroll such a number of subjects regarding 
time, cost, incidence of disease (in given region) usually follows. 

Role of sample size/ power consideration in interpretation and justification of analysis results 

At least power consideration should be a part of interpretation and justification of the results 
of analysis, especially in lack of significant result. The following questions should be 
answered in order to interpret the results appropriately: 
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 In case of significant results, has the difference (or another statistic odds ratio or 
hazard ratio) meaningful size?  

 Was the lack of significant results caused by small difference between compared 
groups?  

 Was the lack of significant results caused by small difference between compared 
groups?  

 Or did not we have sufficient sample size? If not, how many patients we would need. 

 What about the previous research – how many patients they had to demonstrate the 
significance. Was the same primary parameter (binary, continuous) used in previous 
research? Was the statistical method used in previous research the same? There is 
some reason why our results should differ? 

 Was there another factor which influences the results? If possible we should adjust the 
results for that factor. 

 Is not high variability in data caused by difference characteristics of the subjects? If 
yes, it usually leads to adjustment or subgroup analysis. 

4.  Common task for sample size calculation 

4.1. Superiority, non-inferential, equivalence study 
Superiority trial is designed to demonstrate difference between treatments.  

The tested hypothesis is: H0:  = 0 vs. H1:   0, where  is parameter of tested group and 
0 is parameter of reference group (Figure 4). The input for sample size/ power calculation is 

the null hypothesis, i.e. that we will test that the difference is zero (as the most often case), 
assumed size of effect and further factors discussed in section5. 

 

Figure 4. Relationship between significance test of superiority trial and confidence interval. 
Source: CPMP/EWP/482/99 

Non-inferiority trial is designed to demonstrate that the new treatment has not less effect, i.e. 
that is more effective or have the same effect as reference treatment. Non-inferiority margin 
has to be a priory defined. 

The tested hypothesis is: H0: N < -  vs. H1: N > -  where N is detectable difference 
between tested and reference groups (tested - reference) and  is non-inferiority margin 
(Figure 5). The input for sample size/ power calculation is the null hypothesis, i.e. that we 
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will test that the difference is above - , the size of  (usually based on guidelines or clinical 
consideration), assumed size of effect and further factors discussed in section 5. The sample 
size needed in non-inferiority trial is usually higher than for superiority (depending on 
assumptions and the margin). 

 

Figure 5. Relationship between significance test of non-inferiority trial and confidence 
interval. Source: CPMP/EWP/482/99 

Equivalence trial is designed to confirm absence of meaningful difference between tested 
and reference treatment (e.g. used to confirm that both tested and another treatment has 
equivalent distribution of the active substance in a body). Equivalence margin has to be a 
priory defined. 

The tested hypothesis is: H0: E < -  OR E > +  vs. H1: - < E < + , where E is 
difference between tested and reference treatment (tested - reference) parameter of tested 
group and  is equivalence margin (Figure 6). The input for sample size/ power calculation 
is the null hypothesis, i.e. that we will test two one-sided hypothesis with  the margin , the 
size of  (usually based on guidelines, e.g. 80-125%, or clinical consideration), assumed size 
of effect and further factors discussed in section5. 

 

Figure 6. Relationship between significance test of equivalence trial and confidence interval. 
Source: CPMP/EWP/482/99 

4.2. Phase IV study and precision estimates 
The current practice is that sample size for Phase IV studies has to be justified. The Phase IV 
studies are “post-marketing surveillance (PMS) studies but every PMS study is a phase IV 
study. Phase IV is also an important phase of drug development. In particular, the real world 
effectiveness of a drug as evaluated in an observational, non-interventional trial in a 
naturalistic setting which complements the efficacy data that emanates from a pre-marketing 
randomized controlled trial (RCT).”(Suvarna 2010) 

Therefore, the objective of the study is usually to determine the effect of the treatment in 
clinical practice. The sample size justification is based on precision estimate, usually width 
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of confidence interval. In order words the sample size is determined to provide sufficiently 
narrow confidence interval. 

 

Figure 7. Relationship between half-width of 95% confidence interval for mean and sample 
size 

Example 1: 

Type of study: Non-intervention study 

Objective of the study: determination proportion of patients with dyslipidemia who achieve 
target values of LDL-cholesterol after 12 month of therapy. 

Sample size justification: Analysis of 3400 patients enables to determine the proportion of 
patients achieved the target values with precision (i.e. width of 95% Wald confidence 
interval) 3.36%. Taken account the worst scenario that only 50% of enrolled patients will be 
possible to include into analysis – the width of confidence interval would be 4.74%. (Results 
of the study published by Hradec et al.). 

5. Factors influencing the power of statistical analysis 
As was explained above the sample size is mainly affected by the following factors: 

1. Level of significance 

2. Power 

3. Effect 

 

The main factors which affect the power of the statistical test are the following: 

Factors depending on type of data: 

1. Variability of data (for continuous data) 
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2. Proportion in reference group (for binary data) 

3. Incidence of the event (for censored data) 

4. Type of data (categorical, censored, continuous) 

5. Type of test (parametric vs. non-parametric) 

 

Factors depending on design: 

6. Ratio of number of subjects in groups to be compared 

7. Parallel vs. cross-over design 

5.1. Continuous data 
Elements needed for sample size/power calculation if continuous parameter is planned to be 
compared, e.g. using by two sample t-test: 

 Effect = difference in mean values of compared groups 

 Variability of data = standard deviation 

 Type of test (one sided, two sided, for equal/unequal SD) 

 

Variability of data decreasing power of the test, implying more subjects is needed to include 
into analysis to achieve significant results. The relationship is not linear however depends on 
the effect size (Figure 8). 

 

Figure 8. Relationship between effect and sample size for fixed power 80% of t-test and 
various SD 

Example 2 (modeled study): 

Type of study: Non-intervention study, non-inferiority study 

Objective of the study: to compare levels of glucose in two groups of diabetic patients 
according baseline characteristics. 
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Sample size justification: The total number of 410 patients needs to be analyzed in order to 
achieve 90% power to demonstrate that group A is not inferior to group B in change of levels 
of glucose. According to clinical meaningful difference the non-inferiority margin was set to 
1.5%. The sample size was established under assumption that difference between groups is 
0.5% and standard deviation 3%.  Taken account 10% drop-out the total number of patient 
planned to be enrolled into the study is 456 patients. 

Selection of more specific subgroup of the study population would give us assumption of 
lower standard deviation (e.g. 2%). Given this assumption the total numbers of patients are 
140 patients analyzed and 156 enrolled. 

5.2. Binary data 
Elements needed for sample size/power calculation if binary data are compared: 

1. Effect = proportions in both groups 

2. Type of test (one sided, two sided, chi-square, fisher, …) 

While power of t-test depends on effect size (the difference of means) regardless the mean 
values in compared groups the power of chi-square test depends on both – the effects size 
(the difference of proportions) and proportion in reference groups. Towards to 50% in 
reference groups higher number of patients is needed to demonstrate the significant 
difference (Figure 9). 

 

Figure 9. Relationship between effect and sample size for fixed power 80% of chi-square 
test and various proportions in reference group 

Example 3 (modeled study): 

Type of study: Superiority study 

Objective of the study: to compare proportion of patients with improvement after treatment 
with study drug vs. placebo. 

Sample size justification: The total number of 712 patients needs to be analyzed in order to 
achieve 80% power to demonstrate that proportion of improved patients treated with study 
drug is superior to those treated by placebo if the following assumptions are fulfilled: 
proportion of patients with improvement in study drug group 40% and in placebo group 
30%. 
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In another study the proportions of patients with improvement are assumed to be higher 40% 
vs. 50% but the same treatment effect of 10% could be expected. The total number of patients 
to be enrolled is 776 patients. 

5.3. Censored data 
Elements needed for sample size/power calculation if censored data are compared using log-
rank test: 

1. Effect = reduction of incidence of the event 

2. Incidence in reference group 

3. Duration of the follow-up 

4. Duration of accrual time (e.g. period of enrolment) 

5. Type of test (one sided, two sided) 

For power and sample size of the censored endpoint the number of events is the most 
important. 

Alternatively, 

1. Effect = median time of “survival” in both groups 

2. Duration of the follow-up 

3. Duration of accrual time (e.g. period of enrollment) 

4. Type of test (one sided, two sided) 

For censored data, number of events is the most critical feature in analysis of censored data. 
Therefore, incidence of the event in the study population and duration of follow-up change 
the power of log-rank test and sample size (Figure 10 and Figure 11, respectively). Effect of 
both incidence and duration of follow-up on the sample size is presented in Figure 12. 

 
Figure 10. Relationship between power of log-rank test and duration of follow-up for 
various incidences of the event and fixed sample size. Source: Kadlecová 2009 
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Figure 11. Relationship between sample size and power of log-rank test for various 
incidences of the event. Source: Kadlecová 2009 

 

Figure 12. Relationship between sample size and incidence of event and duration of follow-
up. Source: Kadlecová 2009 

Example 3: 

Type of study: ROADMAP: The Randomised Olmesartan And Diabetes MicroAlbuminuria 
Prevention study (Haller et al., 2006) 

Objective of the study: to demonstrate decreasing incidence of mikroalbuminuria using by 
olmesartan medoxomil comparing to placebo 

Given the assumption of 2% incidence of mikroalbuminuria , 30% reduction of the incidence 
by using the study drug the duration of the study was planned was planned to 5 years and 
2020 patients per group was planned to be enrolled in order to achieve 90% power of log-
rank test. 

Results of interim analysis after 3 years shows that incidence of mikroalbuminuria is 3%. 
The decreasing of sample size was not possible as the patients had been already enrolled. 

86



However, it was possible to shorten the follow-up. With given sample size 2020 patient per 
group and 3% incidence the 90% power of log-rank test is achieved after 3.34 (Figure 12.)   

5.4. Type of data (categorical, censored, continuous) 
Type of the parameter to be analyzed is very important factor which has effect on the 
statistical power. As the continuous data include the most information they are the most 
powerful. For comparison of binary parameters the most number of patients is needed. It is 
quite usual that sample size needed for binary and censored endpoint is only slightly 
different.  

Example 4 (modeled study): 

In order to demonstrate the effect of the type of primary endpoint to sample size let’s suppose 
a model parallel study with active control which objective was to demonstrate effect of new 
treatment on decreasing of BMI after 12 month of therapy. 

The following primary endpoints could be taken account: 

a. Change from baseline in BMI (i.e. continuous data) 

b. Proportion of patients with decreasing by 4 kg/m2 (i.e. binary data) 

c. Time needed to achieve the first decreasing by 4 kg/m2 (i.e. censored data) 

Using the real data from the study we can determine the sample size needed to achieve 80% 
power for the endpoints defined above.  

a. Change from baseline in BMI (i.e. continuous data) 

- Mean (±SD) values in test and reference group were 5.13 (±2.69) and 
3.67 (±1.73), respectively.  

- The sample size needed for demonstration of significant difference between 
treatment groups in the change from baseline in BMI is 77 subjects in total. 

- Presented sample size was calculated for t-test for unequal SD in compared 
groups. 

b. Proportion of patients with decreasing by 4 kg/m2 (i.e. binary data) 

- The proportions of subjects with decreasing by 4 kg/m2 in test and reference group 
were 69.39 % and 42.72 %, respectively. 

- The corresponding sample size is 108 subjects in total. 

- Presented sample size was calculated for chi-square test. 

c. Time needed to achieve the first decreasing by 4 kg/m2 (i.e. censored data) 

- The median time needed to achieve decreasing by 4 kg/m2 in test and reference 
group were 166 and 331 days, respectively. 

- The corresponding sample size is 102 subjects in total. 

- Presented sample size was calculated for log-rank test. 

5.5. Ratio of subjects in groups 
It is not necessary to have number of subjects in both groups the same. Ratio 1:2 or 1:3 can 
be reasonable (e.g. for ethical reasons) but it decreases the power of test. Thus, more subjects 
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will be needed in total but in e.g. placebo group will be only a half of subjects. The 
increasing of total number of subjects in the study is graphically presented in Figure 13.  

In epidemiological research it is usual that the groups are not balanced. If data with very 
different counts of subject in compared groups are analyzed the statistician should be aware 
that the power and reliability of the results is decreased. 

 

Figure 13. Relationship between effect and sample size for fixed power 80% of t-test and 
various ratios of groups 

5.6. Parallel vs. cross-over design 
Paired data obtained by e.g. cross-over study are more powerful to demonstrate the 
difference than comparing of independent samples. The sample size is not lower only about 
half. In case of t-test, the paired design can decrease the sample size approximately four-
times (Figure 14). 

Parallel design Cross-over design 

Figure 14. Relationship between effect and sample size for fixed power of t-test and parallel 
vs. cross-over design 

88



6. Cross-validation and simulation in power analysis and sample size 
estimation 

Epidemiological data could be used for sample size estimation of clinical trials. For sample 
size calculation we need assumptions for about the effect and about characteristics of the 
study population. We can use epidemiological data or data from previous studies of the 
population of interest, simulate supposed effect and calculate power directly from data. 

Power of statistical test is probability of rejection H0 if it is really false. Repeating the test 
e.g. 1000times we would be able to determine time the exact power for given sample size. 
Further, the power calculated by the statistical software could be cross-validated by using the 
epidemiological data. 

Repeating of power calculation for different sample sizes we can obtain relationship between 
power and sample size for the statistical methods which could not be directly calculated 
using by statistical software. Useful e.g. for advanced statistical methods or non-parametric 
test. 
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Abstract 

The purpose of this work is to explain the basis of clinical data management to the 
students of computational biology and provide them elementary knowledge about this 
activity as it might be one of their possible areas of interest and employment. We will 
speak about the definition of clinical data management, the prerequisites of successful 
data management and its particular components. 
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1. What is clinical data management 

1.1. Definition 
Clinical data management is a process to capture and transform the raw output from clinical 
trials into a usable form for statistical analysis and reporting.  

It is very important to realize that good credibility and correctness of clinical study result 
strictly depends mainly on data. Thus, data management containing data capture, data 
processing, data validation and data storage strongly participates on the clinical trial results. 

1.2. Objectives 
The objectives of good clinical data management should be: 

 To collect all relevant data 

 To clean up all discrepancies and conserve the original information 

 To assure the quality of collected data 

 To provide accurate data in proper format for statistical analyses 

 To store data for eventual review or further evaluation 

2. Crucial information before starting with data management 

2.1. Position of data management in terms of whole clinical study process 
We can generally say that the sooner the data manager is involved in the project the better it 
is for the project. The ideal situation is when data manager can participate on the creation of 
study protocol. This is the moment when all the activities planned in the study are prepared, 
discussed and consequently fixed.  
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The first possible action performed under the responsibility of data manager is creation of 
case report form. From this step, through data transfer, data entry, data cleaning and 
validation to final export and archiving we talk about data management process. 

 

Figure 1. Position of data management in context of whole clinical study process 

2.2. Data flow 
Before starting with data management it is important to think about number and structure of 
data planned to be captured and processed. Besides crucial data displayed in case report 
forms, we can have specific sheets with laboratory data coming from local laboratories, set 
of laboratory data coming from central laboratory – usually transferred electronically and 
several inputs provided directly by patients like quality of life questionnaires or patient 
diaries. It is very important to know which sort of data are required and for what purposes 
they are captured. Such information is very helpful for successful setup of a clinical database 
and related coherence checks. 

2.3. Important documents 
There are two major documents for data management process. The first of them is study 
protocol containing all clinically relevant information, basic aspects of planned statistical 
analyses, the list of data to be collected, etc. Study protocol shall be followed during whole 
study process as the clue in case of some doubts. 

The second important document is case report form (CRF). CRF is basic tool for complete 
data management process as a source for creation of clinical database and consecutive steps.  

Data manager should take care to be in accordance with both study protocol and CRF during 
whole study process. 
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2.4. Standard operating procedures 
Standard Operating Procedures (SOPs) are set of documents specific for each company and 
contain written instructions ensuring integrity of all performed activities. It is set of general 
rules describing how to perform particular tasks in each single activity. These instructions 
are in line with good clinical practice and contain link to all controlled documents used as 
templates for each particular project during the data management process.  

2.5. Triangle principle 
During the process of data management it is important to keep in mind continuous approach, 
so called triangle principle. This principle presents continuity of process in three different 
styles but in tight relation. At the first angle of triangle we can imagine activity (creation of 
database, programming of check, etc.), at the second angle we can imagine document 
describing this activity (e.g. document called Validation Plan describing all the checks to be 
applied on entered data), at the third angle we can imagine SOP giving rules how to perform 
the activity. It is important to realize the link between each two angles – connection like in 
the triangle: 

 SOP – Template: Each template has link to at least one SOP. 

 SOP – Activity: Each activity has background in at least one SOP. 

 Activity – Template: Each activity is documented, can be reviewed, validated and 
eventually reconstructed. 

3. Clinical data management process 
The clinical data management process consists of many activities as shown in Figures 2 and 
3 below. We can divide the global process into four main areas according to the status of 
project. 

3.1. Setup activities 

3.1.1. Project setup 
Before doing any action we must be sure that we exactly know what to do and how to do it. 
As mentioned before we need knowledge about data flow and we should dispose of the two 
crucial documents, study protocol and CRF. Then we are able to dialogue with different 
people involved in the study and manage specific steps for successful setup of clinical 
database. 

3.1.2. Database setup 
Another and more concrete step is setup of clinical database. Particular details of this process 
may differ according to the computational system used, type of data entry preferred for 
current project, phase of clinical trial or client’s requirements. However, the general 
objective is still the same: building a robust database corresponding CRF structure, matching 
to parameters defined in the protocol and containing required functionalities. Following 
necessities have to be assured:  

 Database content. It must be assured that all relevant data are collected. 

 Database structure. Particular variables must be organized in a way enabling easy 
and transparent data entry and comfortable data processing and analyses. 
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 Database validation. Database must be reviewed, tested and validated for both 
content and structure before provided for use in practice.   

3.2. Data entry 
Data entry part is relatively easier one from the organizational viewpoint. If project and 
database are prepared well, there is no need to modify anything and data are entered into 
database according predefined rules. There are two basic options how to enter data into 
database. 

 Double data entry. This way of data entry is used for the most of clinical trials 
where paper CRF is used. The advantage of this option is that all the data are 
entered into database twice, by two independent people, which strongly minimize 
the possibility of mistake. 

 Simple data entry. This option is used for less important trials with lower budget 
(e.g. post marketing or non-intervention trials) or in trials where electronic data 
capture (EDC) is used. EDC represents approach where investigators enter data 
directly into the clinical database usually via internet browser interface. 

3.3. Data cleaning 
Data cleaning represents very complex set of activities whose main objective is to review 
data entered into the database from many viewpoints to ensure their correctness and validity. 
It is a process where eventual inconsistencies found are solved with investigators via queries, 
signed controlled forms to document all modifications in data. Some of the data cleaning 
steps are:  

 Control of format checking whether entered value corresponds to the predefined 
format of each variable (defined length of field, minimal/maximal permitted value, 
coding options – e.g.: 1 = male, 2 = female). 

 Control of coherence checking coherence between two and more variables (required 
distance between particular visits, matching between inclusion criteria and related 
parameters, etc.) 

 Medical coding is the process to standardize mentioned concomitant medication, 
medical history or adverse event terms. Text fields containing particular terms are 
coded according standard dictionaries and then much more easily processed and 
analyzed.   

 Medical review is the process to review data from medical point of view. This step 
should be performed by medical expert to find inconsistencies among similar 
information mentioned on different part of CRF. 

 Translation could be used in multi-country trials where text field terms are often 
displayed in local language. Unification into one language is usually a standard 
process. 

 SAE reconciliation is an important process for most of trials. The point of this 
process is to reconcile two databases containing information about serious adverse 
events occurred during the study duration. Each serious adverse event (SAE) has to 
be captured in clinical database (together with other study data) and also in safety 
database focused on reporting of SAEs. Not only the number of SAEs but also their 
character has to be the same. 
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Figure 2. Data Management Process using paper case report forms 

 

Figure 3. Data Management Process using electronic data capture system 

3.4. Project closing 
Study closing activities from the data management viewpoint are starting once all the 
inconsistencies are found and all the queries sent to investigators are resolved. The boundary 
between data cleaning and study closing is on data review meeting. Data review meeting is 
very specific and very important meeting organized before locking the database to discuss all 
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aspects of data, to ensure that all the inconsistencies are solved and to define and fix study 
populations for statistical analyses. After this meeting once the last queries are resolved, the 
clinical database can be locked. From this moment no modification in database can be done 
unless specific requirements are asked by the client. Eventual database unlock has to be 
documented properly giving clear reasons for unlock. Anyway, locking of clinical database 
is the last step of data management working with data. The remaining activities consist only 
of documentation and archiving processes.  

4. Conclusion 
Clinical data management is very complex process containing a lot of activities. As all the 
activities need to be carefully planned and scrupulously met, strong project management 
skills are required for successful data management of important clinical trials. It is necessary 
to stay kept in touch with all the key people involved in the study and continuously keep in 
mind project status and timelines. Only once the database is locked, data manager can slow 
down and start preparing materials for archiving. 
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Estimating number of cancer patients potentially treated with 
anti-tumour therapy 
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Estimation of relative survival of patients after PCI 

Klára Benešová 

Faculty of Science, Masaryk University, Brno; e-mail: 374222@mail.muni.cz 

Abstract 

Percutaneous coronary intervention (PCI) is helpful in treatment and prevention of 
ischaemic heart disease (IHD). We compared survival of patients after PCI with 
survival of the general Czech population to find out whether PCI patients decease less 
or more than are expected. Relative survival, the ratio of the observed and the expected 
survival, was used to estimate disease-specific survival. An analysis of the National 
Register of Cardiovascular Interventions (NRKI) showed absolute (observed) survival 
of 78.4 % patients (81.3 % in patients with survival > 30 days) and relative survival of 
93.8 % patients (96.6 % in patients with survival > 30 days) at 5 years of follow-up. 
Relative survival was higher in men and patients  

Key words  

Population-based survival analysis, PCI, NRKI, relative survival 

1. Introduction 

In 2010, ischaemic heart disease (IHD) caused 25 178 deaths (23.6 % of all deaths that year) 
in the Czech Republic (Eurostat, 2013). Percutaneous coronary intervention (PCI) is one of 
the ways how to treat IHD. PCI is a non-surgical procedure used to widen narrowed coronary 
arteries. A deflated balloon on a catheter is placed into the narrowed artery. After that, the 
balloon is inflated to open the artery and a stent is inserted at the site of blockage to keep the 
artery permanently open. 

We focused on probability estimations of relative survival of patients after PCI to gain the 
information whether PCI gives an advantage in a future patient’s survival. Relative survival 
is the ratio of the observed and the expected survival rates which gives an estimate of 
survival due to the disease of interest without the need of information on individual cause of 
death. To obtain the relative survival we compared the survival rate in PCI patients with that 
in the total Czech population, adjusted for sex, age and calendar time. 

2. Methods 

2.1 Patients 
The National Register of Cardiovascular Interventions (NRKI) is the analysis-based data 
source which contains records of cardiovascular interventions performed in the Czech 
Republic from January 2005 to the end of September 2011. During this time period, 97,844 
patients underwent PCI. From 120,419 records, we excluded repeated interventions and 
enrolled 86,386 patients in which their first PCI was performed in the considered time frame. 
This study group consisted of 58,881 men (68.2 %; mean age 63 years) and 27,505 women 
(32.8 %; mean age 70 years). Patients were divided into three age groups < 60, 60-74 and 

 75 (Table 1). For the purpose of the long-term survival analysis, we considered only 
83,262 patients who were alive after 30 days from the intervention. 
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Table 1. Clinical characteristics of 86,386 patients 

Characteristics No. or mean ± SD % or range 

Age 65.6 ± 11.4 22-100 
Sex   
 Male 58,881 68.2 
 Female 27,505 31.8 
Age group   
 < 60 26,469 30.7 
 60-74 38,042 44.0 
  75 21,875 25.3 

 

2.2 Statistical methods 
Mortality related to IHD was estimated by computing the relative survival rate using the 
Hakulinen method, as the ratio of the observed to the expected rate. The observed survival 
rate for all causes of death was calculated by the Kaplan-Meier method based on the data of 
the NRKI. The expected survival rate was calculated from life tables which are freely 
available on the website of the Czech Statistical Office (CZSO, 2012). The log-rank test was 
used to assess differences between survival curves. Traditional age standardization was 
performed with weightings derived from the initial age structure of the study group. 

3. Results 

3.1 Observed and relative survival 
Overall, 3,124 patients died within the first 30 days following their PCI (3.6 %); 10,388 other 
patients deceased during following 5 years. Figure 1 shows the observed survival (OS) and 
relative survival (RS) in men and women alive on day 31. OS was higher in men (82.7 % vs. 
78.3 %), as well as RS (97.7 % vs. 94.2 %). In average, women were much older than men; 
thus age standardization would be appropriate. Age-standardized OS was higher in women 
(81.9 % vs. 80.4 %), age-standardized RS was still higher in men (98.5 % vs. 94.2 %) (Table 
2). 

This study showed significantly reduced relative long-term survival in women compared to 
men of all age groups. Patients older than 74 years were surviving better than younger ones 
(Figure 2). In men older than 75 years, the relative survival rate increased even to 103.5 % 
(Table 2). 

Table 2. Crude and age-adjusted 5-year OS and RS rates of patient with survival > 30 days 

 Observed survival (%) Relative survival (%) 

Age group Men Women All Men Women All 

< 60 92.5 93.4 92.6 97,2 95.6 96.9 
60-74 82.3 83.2 82.6 96.5 91.2 94.7 

 62.5 65.6 64.0 103.5 97,9 100,6 
Crude 82.7 78.3 81.3 97.7 94,2 96.6 
Age-adjusted 
    Difference 

80.4 
(-2.3) 

81.9 
(+3.6) 

81.0 
(-0.3) 

98.5 
(+0.8) 

94.2 
(+0.0) 

96.9 
(+0.3) 
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3.2 Limitations of the study 
In calculations of the expected survival in the study group it has to be assumed that survival 
in a general population is unaffected by deaths related to the disease of interest. If the 
prevalence of that condition in the general population is low enough, then this will have little 
impact (Nelson et al., 2008). Unfortunately, this is not the case because IHD is definitely not 
the rare disease, especially in the advanced age. Furthermore, patients indicated for PCI were 
selected with respect to their overall medical condition. Both reasons could have affected the 
calculated relative survival rates to the better results. 

              
Figure 1. OS and RS curves following 
a first PCI by sex in patients with survival 
> 30 days 

Figure 2. RS curves following a first PCI 
by age group and sex in patients with 
survival > 30 days 

4. Conclusion 

Age-standardized OS was higher in women while age-standardized RS was higher in men. It 
means that women after PCI deceased less than men but often in a consequence of IHD. 
Relative survival was lower in women and in patients below 75 years of age. This was most 
likely due to acceptance of patients with more comorbidity among the younger patients 
and/or the high prevalence of IHD in the general population. 
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Abstract 

In this paper we study the equine stress test ECG. We are using the time-frequency 
analysis in order to examine the changes in frequencies throughout the time interval of 
the experiment. The goal of this study is to describe the fitness state of the subjects 
according to information obtainable from ECG signals. For this purpose we have 
extracted certain features from the signal, namely power and Poincare plot descriptors. 
Cluster analysis is then used to create groups of features’ values in order to interpret the 
heart’s reaction to the stressing. We found, that it is possible to associate these groups 
with the testing protocol and thereby describe the state of stress. 

Key words  

ECG, health and fitness evaluation, equine stress test, time-frequency analysis 

 1. Introduction  
The aim of this study is to use the equine stress test electrocardiogram (ECG) to create a 
system of fitness evaluation. The system is based on the time frequency analysis of signals 
and comparison among subjects. We extracted features from the time-frequency transform of 
the signal and these we analysed. The idea of the system was to associate the vectors of 
descriptors’ values at certain frequency bands and time windows with the stress test protocol. 
These vectors were therefore classified by means of clustering. 

Through this system we expect to have easier capturing of abnormalities either in health or in 
fitness of the subject than the plain time-frequency transformation result is able to provide. 
This might be very useful for quick and easy identification of problematic horses, or for 
example potential diseases of heart or any other that has effect on performance. Another use 
might also be the easy comparison of subjects leading to quick detection of heart 
adaptability, which is a key factor of performance. Therefore the possibility of using this 
system as a measure of racing ability might exist. 

2. Dataset 

The dataset includes complete equine ECG signals from fourteen subjects that were screened 
during a stress test. All these tests were done using a treadmill at a veterinary clinic and were 
supervised by veterinary surgeons. 
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3. Frequency domain analysis 

As our system is based on time-frequency analysis of the signal, we needed to determine the 
length of the time window we would use. The frequency analysis helped us to decide this and 
also discovered that the highest frequency involved in the signal was much lower than 
original sampling rate. Therefore, we decimated the sampling frequency.  

4. Time-frequency analysis 
From all the time-frequency transform methods we chose to use the Fourier transform based 
short time Fourier transform (STFT). We chose to work with the hamming window and to 
overlap each successive window. 

5. Feature extraction 
The result of the STFT was only a step for us to be able to extract some features that would 
describe the signal. For that purpose we decided to deal with a simpler image of the power 
averages as it is much more suitable for classification and clustering. Therefore we divided 
the time axis into intervals of the 60 seconds length and the frequency axis into bands. It is 
also fact, that , since higher 
frequencies showed no visible amplitudes and were therefore considered as unimportant.    

5.1. Power features 
For each sub-matrix created by the bands we calculated the power. Power of a signal is 
defined as sum of the second powers of al+l the values divided by the number of these 
values. In order to get the same scale among all subjects we  
The next step was cluster analysis. We divided all the vectors of n
the specific frequency bands among subjects into clusters. We were trying to depict the real 
amount of stress that the subject felt during a particular minute. For this analysis we used the 
k-means clustering with k equal to three as this number turned out to be the best after few 
trials. 

 

Figure 1. Visualisation of the power values extracted in specific time and frequency bands 
and its clustering for Aragorn 
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Figure 1 shows a sample visualisation of the power analysis result along with the clustering 
result. The upper part of Figure 1 is a result of power analysis. On the x axis there are time 
bands; y axis represents the frequency bands. The colour stands for the 
value. The bottom part of this image represents the cluster in which each vector of powers 
belongs.  

Our image as we can see was not perfect. The stage power changes are very sudden causing 
wrong clustering in some cases. Therefore we decided to overlap our time windows.  

The first visualisation of all the subjects’ results is presented in Figure 2. The picture is 
constructed with an upper part, which represents the power of the signal for time and 
frequency windows. The lower part then represents the cluster, into which each vector of 
powers in specific frequency bands for a time window belongs. White lines across the whole 
picture represent the border between two horses. The x axis represents the time window 
number, which cumulates with the subjects.  

 

Figure 2. Visualisation of the power values extracted in specific frequency bands and 
overlapping time intervals and its clustering for all subjects 

5.2. Poincare Features 
Next feature we extracted from our signal represents the geometric domain. We used these 
descriptors of the Poincare plot: the standard deviation in the direction of the identity line 
(called SD2) and the standard deviation in the direction orthogonal to the identity line (called 
SD1) (Bravi et al., 2011). Poincare plot represents the display of a generic sample n of the 
time series and as a function of the sample n-1 (Linn et al., 2010). As stated, one creates a 
Poincare plot from a signal in time domain. As we did a great analysis in the frequency 
plane, we can easily filter the signal, so that we would use only the frequencies considered to 
carry the useful information. We decided these frequencies to originate in the first five 
frequency bands. That means in this place we use only frequenci As we had 
a matrix of these measures for all horses, we again needed to apply nor
have the same scale. 

Figure 3 shows the resulting clustered 
upper part shows the dynamics of the descriptor values in time and the lower part shows the 
cluster into which each time window belongs. Subjects are separated from each other by thin 
red lines. The x axis represents the time window number, which cumulates with the subjects. 
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Figure 3. Visualisation of the Poincare descriptors’ values extracted in specific time and 
frequency bands and its one-stage three-means clustering for all subjects 

5.3. Combined Feature visualisation 
Now, as we have these three clusters defined by the two Poincare descriptors, we can add 
them to the clustered power image to capture similarities. 

 

Figure 4. Visualisation of the power values extracted in specific frequency bands and 
overlapping time intervals and its one-stage three-means clustering with the result of the 
clustering of the Poincare descriptors values for all subjects 

Figure 4 shows the complete results we accomplished for overlapping time windows. The 

cluster analyses. The upper cluster analysis represents the powers cluster; the lower cluster 
analysis represents the Poincare descriptors cluster. Subjects are always separated with a thin 
white line. The x axis represents the time window number, which cumulates with the 
subjects. 
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6. Discussion 

This study has several limitations. Firstly, the dataset is not large enough to provide statistics 
of differences among subjects and by that to prove our system provides contributive results. 
Secondly, only few features were extracted to describe the ECG dynamics. A possible 
expansion of this work is the use of other features, possibly describing different domains, 
such as the invariant, or the statistic. Also, a combination of used, or other features might 
describe the ECG variability better than each separately. Additionally, one could compare to 
our assumptions about the fitness state of horses based on the ECG features to some actual 
physiological measures, such as lactate rates during the experiment. Other comparison might 
be done with the handicap information of the subjects. 

7. Conclusion 
In this study we analysed the equine ECG signals recorded during a stress test. We created a 
system helping us to find similarities and differences in responses to the different phases of 
stressing.  
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Abstract 

Acute heart failure is one of the most common causes of death in the developed 
countries. It is a condition with high risk of hospitalization mortality and mortality in 
medium time. There are many studies that analyzed mortality risk factors, but only one 
study, the COACH study, analyzed the risk factors for rehospitalization. Individual 
rehospitalizations are expensive and reduce the quality of life. AHEAD database was 
used as a data source, namely a consecutive subset of 608 patients. For analysis of risk 
factors it is necessary to use multistate survival models, which are models with a final 
number of states, in which the patients can enter during the follow-up period. Using 
multistate survival models we are able to determine which factors affect individual 
transitions. Peripheral vascular disease (PVD) was the most important risk factor in 
patients, who were not rehospitalized. Patients with PVD had a 3.7 times higher risk of 
death than healthy patients. In patients, who were rehospitalized, aortic stenosis was 
analyzed as the most important risk factor of death. Individuals with aortic stenosis had 
a 3.1 times higher risk of death than others. Aortic stenosis was analyzed as the most 
important risk factor for rehospitalization, too. Patients with aortic stenosis had a 1.9 
times higher risk of being hospitalized. 

Key words  

acute heart failure, risk factor, rehospitalisation, mortality, multistate survival model, 
hazard ratio 

1. Introduction – heart failure 

Heart failure is a state in which the heart is unable to fulfil its function of pump. This means 
that does not go enough blood into the circulatory system. We can distinguish between left 
and right heart failure. If left part of the heart is damaged, then it does not draw enough 
blood to organs. With right heart failure there is not enough blood in the lungs. Further we 
can divide heart failure on acute and chronic. Acute heart failure (AHF) occurs suddenly in a 
relatively healthy heart, while we can talk about chronic heart failure, when the failure 
recurs. 

1.1. Causes of AHF 
The most common cause of AHF is cardiomyopathy, which is a summary term for all 
damage to the myocardium. The other reasons of heart failure are heart attack, heart 
arrhythmias, hypertensive crisis or cardial tamponade. 
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1.2. Frequency of AHF 
AHF occurs in 0.4–2% of the total population and in the central Europe up to 1.3% of the 
local population suffer from this problem (Špinar a Vítovec, 2007). Its frequency increases 
with age. Every eleventh individual at age 80–90 years suffers from AHF. 

1.3. Prognosis after AHF 
Despite progress in treatment, prognosis for patients AHF is poor. This problem is caused by 
the fact that diagnosis and treatment of acute heart failure are very medically and 
economically demanding. About 70% of patients die within 5 years from heart failure 
(Postmus et al., 2011), of which 25% of individuals die within the first year. AHF influences 
other rehospitalization from cardiovascular causes. Around 45% of patients hospitalized with 
heart failure are rehospitalized during the 12 months and the risk of death then increases up 
to 60%. 

2. Methods 

2.1. Statistical methods   
Survival analysis is a set of the statistical methods, by which we can analyze the time to 
occurrence of observed events. The analysis is characterized by two functions – survival 
function and risk function.  

The Cox regression model is a statistical method, by which we can determine the relationship 
between patient’s survival and the explanatory variables. 

The hazard ratio (HR) for the two groups (e.g., diabetic and non-diabetic) provides 
information on how many times one group has a higher risk of occurrence of the event than 
the other one. 

2.2. Patients 
Data source is the AHEAD database, which was established in 2006 and was terminated in 
2012 with more than 8,600 patient records after AHF. Analysis of risk factors was performed 
only on a subset of 608 consecutive patients from the University Hospital Brno. Men slightly 
prevailed in this cohort (53%). The average age of the dataset was 72.1 years, with 61.2% of 
subjects older than 70 years. Representation of other factors, which were analyzed as risk 
factors in individual studies, is shown in Table 1. 

3. Results 

2.1. Risk factors of mortality 
Of all 608 patients, 487 were not rehospitalized. Of these patients, 219 eventually died. The 
most important risk factor for mortality in patients without rehospitalization was peripheral 
vascular disease (PVD). Patients with PVD have a 3.7 times higher risk of death than healthy 
individuals (Figure 1). 121 patients were rehospitalized. Of these patients, 104 returned home 
and eventually 40 died. The most important risk factor of death in these patients was aortic 
stenosis. Individuals with aortic stenosis have a 3.1 times higher risk of death than others 
(Figure 2). 
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Table 1. Representation of risk factors from studies (n=608) 

 Number of patients % 

Sex 
     Male 
     Female 

 
322 
286 

 
53.0 
47.0 

Age > 70 years 372 61.2 
Ejection fraction (EF) < 40 281 46.2 
Uric Acid (> 420 umol/l for M, 120 g/l for F) 
Diabetes mellitus 

259 
249 

42.9 
41.0 

Anaemia (Hb < 130 g/l for M, 120 g/l for F)  202 33.8 
Heart attack 195 32.1 
Pulmonary edema  118 19.4 
Hypertensive crisis 55 9.0 
Hyperkalemia (K > 5.5 mmol/l) 27 4.4 
Renal failure 14 2.3 
Hyponatraemia (Na < 130 mmol/l) 26 4.3 

 

Figure 1. Mortality risk factors in patients without rehospitalisation (n=487) 

 

Figure 2. Mortality risk factors in patients after 1st rehospitalisation (n=104) 

2.2. Risk factors of 1st rehospitalization 
Of all 608 patients, 121 were rehospitalized. Aortic stenosis was the most important risk 
factor for rehospitalization as well as for death in patients after rehospitalization. Patients 
with narrowed aortic valve have a 1.9 times higher risk of being rehospitalized (Figure 3). 
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Figure 2. Risk factors for 1st rehospitalization (n=608) 

3. Conclusion 
It was found that aortic stenosis became a factor increasing the risk of death and 
rehospitalization. Patients with mitral regurgitation have an increased risk of death and 
rehospitalization, too. Regarding the biochemical and chemical parameters, low value of 
creatinine clearance, high uric acid, anemia and hyperkalemia were analyzed as risk factors 
for death. Creatinine clearance and uric acid were also demonstrated as the factors increasing 
the risk of rehospitalization. Conversely PCI and bypass, surgery solving heart attack, reduce 
the risk of death and rehospitalisation. 
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