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Preface

The 9th year of the Summer School on Computational Biology continues in a yearly tradition
of informal summer schools focused on interesting aspects of biology, health care research,
and biomedicine. This year’s theme is “Stochastic Modelling in Epidemiology”. Bearing in
mind the broad definition of epidemiology: “Epidemiology is about the understanding of
disease development and the methods used to uncover the etiology, progression, and
treatment of the disease”, we can consider the scope of epidemiology in public health being
as old as mankind itself. However, it definitely does not mean that epidemiology is out of
fashion. In fact, the opposite is true. Epidemiology has an indisputable role in clinical
research, where the methods of epidemiology still contribute to more and more detailed
understanding of the processes associated with different diseases. Nowadays, modern
epidemiology cannot be imagined without statistical methods that help us uncover the hidden
associations between factors and diseases under study. Stochastic models belong among the
main procedures used in this way. These models can help us in quantifying factor effect,
adjusting for confounding variables, and studying complex correlation structures. Therefore,
stochastic models in epidemiology represent an up-to-date issue that we hope will be of
interest to all participants of the 9th year of the Summer School in Computational Biology.

We greatly acknowledge financial support by the Ministry of Education, Youth and Sports of
the Czech Republic; project CZ.1.07/2.2.00/28.0043 “Interdisciplinary Development of
Computational Biology Study Programme” and national budget of the Czech Republic.

On behalf of the programme and organizing committee,
Brno, August 12, 2013

Ondtej Méjek

Tomas Pavlik












Basic concepts in epidemiology

Ondrej Méjek
Institute of Biostatistics and Analyses, Masaryk University, Brno;
e-mail: majek@iba.muni.cz

Abstract

Epidemiology studies the distribution and determinants of disease in human
populations. In this lesson, basic concepts of epidemiology will be explained. After a
short introduction, measures of disease occurrence will be defined in Chapter 2.
Chapter 3 will introduce measuring changes in disease frequency as a result of exposure
of individuals to a particular risk or protective factor. In epidemiology, several study
types with various advantages and disadvantages may be used to measure such effects.
These study types will be introduced in Chapter 4, along with sources of error in such
studies. Validity of a study may be also compromised due to confounding, a
phenomenon of key importance in the observational epidemiology. Confounding
variables will be described in Chapter 5. Chapter 6 describes basic methods of adjusting
for confounding variables. Basic methods of data analysis in epidemiology will be
explained in this lesson; however, detailed description of more advanced statistical
methods will be given in the following lessons.

Key words

Epidemiology, occurrence measures, effect measures, study types, confounding.

1. Introduction

Epidemiology can be defined as the study of the distribution and determinants of disease
frequency in human populations (Rothman et al., 2008). This definition is reflected in the
basic concepts described in this lesson: firstly, measuring occurrence of a disease in a
population, followed by measuring effect of the exposures (when looking for the cause of a
disease, such as smoking, alcohol, polluted environment, etc.) or interventions (e.g., new
medicine, medical procedure, vaccination, screening programme etc.) on risk of the disease.
This task is not an easy one, as many associations between exposures and diseases may be
spurious, not providing an opportunity to intervene and improve the health of individuals.
Finding the causal relationship between a disease and exposure includes both proper design
of an epidemiological study, which needs to be appropriate for the presented problem, and
the application of proper statistical methods for the analysis of collected data. Although the
classical epidemiology started with communicable diseases (one of the most notable early
achievements is the work of John Snow, who elucidated the association between cholera and
the source of drinking water in the 19th century), epidemiologists have also paid a lot of
attention to chronic diseases (e.g., cardiovascular, cancer, diabetes, etc.) and their causes
(Saracci, 2010).



2. Measures of disease frequency

The objective of epidemiology is often to quantify the effect of a potential cause on the
occurrence of disease. Therefore, we must be able to measure the frequency of disease
occurrence. The first step in calculating disease frequency is to specify the population under
study, usually including only persons susceptible to a given disease (for example, omitting
females when prostate cancer is the subject of interest). The population at risk can be defined
by demographic, geographic or environmental factors. In this chapter, the term disease case
also relates to injuries, different physiological changes under study etc. Definitions of basic
disease frequency measures are presented below (dos Santos Silva, 1999; Bonita et al.,
2000).

Prevalence of the disease is calculated as follows:

No. of existing cases in the population at risk at one point in time
Prevalence =

No. of people in the population at risk at the same point in time

In practice, data on the population at risk are often approximated by the total population in
the study area. The above-mentioned definition relates to the so-called point prevalence, as it
refers to a single particular point in time. Accordingly, we may refer to an entire specified
period of time. In that case, the measure is called period prevalence.

Incidence risk of the disease is calculated as follows:

No. of new cases of disease arising in the population at risk
over a given period of time

Incidence risk =
No. of disease-free people in that population

at the beginning of that time period

Calculation of incidence risk assumes that the entire population at risk at the beginning of the
study period was followed up during the whole period of time. To account for varying
lengths of follow-up, the denominator can be recalculated to represent the sum of individual
times that a particular person was at risk of becoming a case. This is called person-time at
risk. The resulting occurrence measure is usually called incidence rate (as opposed to the
incidence risk, which is a proportion). Thus, the incidence rate of the disease is calculated as
follows:

No. of new cases of disease arising in the population at risk
Incidence rate = over a given period of time

Total person-time at risk during that period

Again, in practice, the denominator is often calculated approximately by multiplying the
average size of the study population by the length of the study period. The difference
between risk and rate is depicted in Figure 1.

Provided that the prevalence is low and does not change significantly over time, it can be
calculated as a product of incidence and average duration of the disease (Bonita et al., 2006).
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Person
1 O 5 years at risk
2 ; 3 years at risk
3 3 6 years at risk
a4 Q 7 years at risk
5 : 3 : ; : H 2 years atrisk
0 1 2 3 4 3 6 7 23 years at risk in total
X New case of disease Year
O Study drop-out Incidence risk: 3/5

Incidence rate: 3/23

Figure 1. The outline of computation of incidence risk and incidence rate.

Mortality is an indicator similar to incidence, taking death as a specific case. The severity of
a disease, represented by the proportion of persons who die within a specified time, is shown
by case fatality.

No. of deaths occurring in the population at risk
Mortality rate = OVer a given period of time

Total person-time at risk during that period

. No. of deaths from diagnosed cases in a given period
Case fatality =

No. of diagnosed cases of the disease in the same period

3. Measures of effect

An effect of a factor is the change in a population characteristic (such as incidence or
mortality) that is caused by the factor considering one of its levels versus another (Rothman
et al., 2008). Characteristics in epidemiology with potential effects on disease frequency are
usually called exposures (e.g. behaviour, treatment or other intervention, trait, exposure in
the usual sense, or some other disease). The effect measures in epidemiology could be either
relative (represented by the ratio of two disease incidences — exposed group vs. unexposed
group) or absolute (represented by the difference of the two disease incidences).

3.1 Relative measures of exposure effect

Relative measures are used to ascertain the strength of association between the exposure and
the outcome of interest, i.e., how much is the exposed group more likely to develop the
disease compared to the unexposed group. Computation of basic effect measures is
particularly simple from a 2x2 contingency table of binary outcome against a binary
exposure status (Table 1). Statistical significance of the association between the outcome and
the exposure could be tested using either the chi-square test or the Fisher’s exact test
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(Woodward, 1999). We can also use this table to compute the risk ratio, odds ratio and
related effect measures (dos Santos Silva, 1999).

Table 1. General representation of the study results.

Exposed group  Unexposed group  Total

Outcome  Yes a b a+b
present No c d c+d
Total a+c b+d n

Generally, the risk ratio (RR) is calculated as follows:

R Risk of disease in the exposed group (R;)

Risk of disease in the unexposed group (R)

Using the notation and data introduced in Table 1, we can compute the RR as follows:

R R, al(a+c)

"R, bl(b+d)

The distribution of the sample risk ratio is skewed and we will therefore use a log
transformation to ensure approximate normality. The following formulas show a standard
error and 95% confidence interval (CI) for sample logRR. To construct CI for RR itself, we
will exponentiate the two CI limits (Woodward, 1999).

1 1 1 1
SE“"gRR):\/z‘mw‘bm

logRR —1.96 x SE(logRR) to logRR +1.96 x SE(logRR)

The definition of risk just used is identical to probability. In epidemiology, it is often useful
to use one more specification of chance called the odds. The probability is computed as the
number of times at which a specified outcome is present, related to the total size of the
group. On the other hand, odds are calculated as the number of times at which a specified
outcome is present, related to a number of times at which the same outcome is not present.
Similarly to risks, we can compute odds ratio (OR) relating the occurrence of events in two
groups:

R]
Odds of disease in the exposed group 1-R,
OR = =
Odds of disease in the unexposed group R,
1-R,

Using the notation and data introduced in Table 1, we can compute the OR as follows:

_alc_ad
" b/d  be
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Similarly to the relative risk, we will approximate the log transformed OR by normal
distribution:

SE(logOR) = %+%+%+é

logOR —1.96 x SE(logOR) to logOR +1.96 x SE(logOR)

Risk is usually the preferred measure because it is easily understood by most people. On the
other hand, OR is used very often in epidemiology. In case-control studies (see below), we
can only estimate OR. Moreover, OR will be a good approximation of RR whenever the
disease in question is rare. It is, however, necessary to acknowledge that these measures may
differ substantially for common diseases.

*k*k

Example 1. The following table shows results of Pooling Project that studied risk factors for
coronary heart disease in men (Woodward, 1999):

Smoker at entry

Yes No Total

Coronary event  Yes 166 50 216

during follow- No 1176 513 1689

up Total 1342 563 1905
The risk ratio is = M =1.393

50/(50 +513)
The standard error of the log(RR) is
SE(logRR) = \/L—;+L—; =0.1533
166 166+1176 50 50+513

The lower and upper limit of the 95% CI of log(RR)
Liogrr =10g1.393-1.96x0.1533 =0.031 Lgg =exp(0.031) =1.031
Ujoerr =10g1.393+1.96x0.1533 =0.632 Upgg =exp(0.632) =1.881

Which gives the interval estimate of the RR: 1.393 (1.031-1.881)

_166/1,176
50/513

The standard error of the log(OR) is

The odds ratio is =1.448

SE(logOR)=\/L+L+i+L=o.1698
166 1176 50 513

13



The lower and upper limits of the 95% CI of log(OR) are
Liogor =10g1.448-1.96x0.1698 =0.038  Log =exp(0.038) =1.038

Ujogor = l0g1.448 +1.96x 0.1698 = 0.703 Uy = exp(0.703) = 2.020

Which gives the interval estimate of the OR: 1.448 (1.038-2.020)

*k*

3.2 Absolute measures of exposure effect

Relative measures alone may not provide a comprehensive information about the association
between exposure and disease. As opposed to the strength of association estimated by
relative measures, absolute measures show us the impact of the association between the
exposure and the outcome of interest in public health terms: if the disease is more common,
even exposures with lower relative effect may have more substantial absolute importance.
The following absolute measures are often used for either risk (e.g., smoking) or protective
(e.g., vaccination) factors (dos Santos Silva, 1999).

3.2.1 Risk factors

Risk difference (also called excess risk or attributable risk)

= risk in the exposed group — risk in the unexposed group

“R-R, = a b
a+c b+d

Excess fraction (also called excess risk percentage or attributable risk percentage)

R 1=—R1_R0

Ry Ry

=RR-1=

3.2.2 Protective factors
To handle the preventive exposures, modification of the earlier measures was done by
interchanging R; with R,.
Risk reduction (also called absolute risk reduction)
= risk in the unexposed group — risk in the exposed group

b a

:R— =
1T pird a+c

Prevented fraction (also called relative risk reduction; e.g., vaccine efficacy)

=1—RR=1—&=M
Ry Ry
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4. Types of epidemiological studies

The studies in epidemiology can be either observational or experimental (Figure 2). In an
observational study, the investigator purely measures the occurrence of exposures and/or
outcomes. On the other hand, the principle of experimental studies is an active intervention
to change a disease determinant, diagnostics, treatment, etc.

’ Descriptive |

Observational <

i i i Analytical |

Epidemiological ’ yt
study Q Ecological
O Cross-sectional

Experimental U Case-control
(intervention) O Cohort

U Randomized controlled trials
O Field trials
O Community trials

Figure 2. Types of epidemiological studies (classification from Bonita et al., 2006).

4.1 Observational studies

The simplest type of epidemiological study is a descriptive study, which means pure
description of disease occurrence in the target population. This is often the first step in our
epidemiological inquiry. Usually, we continue with an analytical study, which focuses on the
quantification of relationships between the health status and a defined exposure.

Ecological study is usually useful as a hypothesis generation study. Rather than focusing on
individual health outcomes and exposures, we are interested in aggregated figures for defined
groups of people (e.g., in different regions or at different time periods). These studies are
very simple and cheap (usually relying on data collected for different purposes); however,
they tend to be difficult to interpret. Moreover, they may suffer from a serious bias
(ecological fallacy), which stems from our inability to identify associations existing at the
individual level.

Cross-sectional study measures both exposure and health status at the same time. Therefore,
they are very useful to estimate the prevalence (of a disease or risk factor, they are also
called prevalence studies); however, it is more difficult to draw causal inference from these
studies, as we usually don’t know whether the exposure preceded the effect.

Case-control studies (Figure 3) enable us to assess exposures and health status at different
times (they are longitudinal). We start with the selection of cases (patients with the disease
of interest among the entire target population). We also need to select controls; this step is
critical when we perform case-control studies. The control group must sample the exposure
prevalence in the target population. The exposure is usually evaluated retrospectively for
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both cases and controls, e.g., by direct questioning, examining hospital records, or even by
biochemical measurement. The association between the exposure and a disease is measured
by calculating the odds ratio (OR). The case-control studies can be therefore used to estimate
the relative risk of a disease, but we cannot estimate the prevalence of the disease, because it
is defined by the epidemiologist conducting the study (Bonita et al., 2006).

RETROSPECTIVE INQUIRY

People without
People with oo
the disease
(CASES) People with
exposure

Target
population

I\ /N

People without
People without exposure
the disease
(CONTROLS)
People with
exposure

Figure 3. Scheme of a case-control study.

As opposed to the case-control studies, cohort studies (Figure 4) start with the selection of
healthy individuals from the target population and with the ascertainment of their exposure
status. The whole cohort is then followed up for a sufficient time interval to observe how
many disease cases develop in both exposure groups. This gives them a longitudinal nature
and indeed, cohort studies provide the best information among observation studies about the
disease causation (Table 2). However, as it may take really a long time between the exposure
and its effect, they may be both lengthy and costly.

PROSPECTIVE
FOLLOW-UP

People
developing

disease
People without /

exposure \
Peoplenot

developing
disease
Target People without
population the disease
People
developing

disease
People with /

exposure \
Peoplenot

developing
disease

Figure 4. Scheme of a cohort study.
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Table 2. Advantages and disadvantages of different observational study designs (Bonita et
al., 2006).

Probability of  Ecological Cross-sectional ~ Case-control Cohort
selection bias NA medium high low
recall bias NA high high low
loss to follow-up ~ NA NA low high
confounding high medium medium medium
time required low medium medium high
cost low medium medium high

NA: not applicable
4.2 Experimental studies

In experimental (intervention) studies, patients are assigned a particular exposure (treatment,
prevention, etc.) by the researcher. The health outcomes are then compared in the
experimental group (with the treatment) and the control group (without the treatment). The
golden standard in the design of effectiveness studies are randomised controlled trials, where
individuals are randomly allocated to the experimental or control group. Field trials usually
take place among healthy people from the general population, who are perceived to be at risk
of a disease, with the aim to prevent the disease. The study entity in community trials are not
individuals, but entire communities who are allocated to treatment.

4.3 Sources of error in epidemiological studies

Random error is inevitable in studies based on population sampling. It stems from the
individual biologic variation, sampling error and measurement error (Bonita et al., 2006). We
can decrease the measurement error by stringent protocols and care taken during individual
measurements. Individual variation always occurs in biological experiments; however,
sampling error could be decreased by increasing the sample size. Sample size calculations
can (and should) be done before conducting studies, so that we could be confident that the
study is powerful enough to confirm the study hypothesis.

Systematic error (or bias) is a systematic difference of the study results from true values.
The principal biases in epidemiology are selection and measurement biases. Selection bias
means a systematic difference between the characteristics of the people selected for a study
and the characteristics of those not selected. Measurement bias happens when measurements
or classifications of individuals are inaccurate. A specific case of this bias — recall bias —
occurs in the case-control studies when cases are more (or less) likely to recall some past
exposure (Bonita et al., 2006). The third threat to validity of the study is called confounding
and will be described in the next chapter.

5. Association vs. causation

5.1 Association and confounding

Ideally, we would like to know what would be the risk of a disease in a particular population
under different conditions given by the presence or absence of an exposure — an exposure
effect (Rothman et al., 2008). Although indicators outlined in section 2 are often called effect
measures, in fact these are merely designed to capture an association between two variables.
Consider an example where we estimate a ratio of lung cancer incidence in males and
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females in the Czech Republic. Clearly, this is not the effect of changing sex in a particular
population, merely a measure of association between the sex and incidence.

It is tempting to substitute association measures for effect measures and also to give them
directly causal explanations. However, this approach may be incorrect. Let us think of an
example where we try to find out the cause of lung cancer (Katz, 2006). We will consider
carrying matches as a potential risk factor of the disease. We will perform the study and,
indeed, find substantial association between carrying matches and the lung cancer.

The real question in epidemiology is, however, whether the lung cancer risk in a particular
population would change if the individuals would or would not carry matches (in other
words, would matches ban prevent lung cancer?). In this particular example, it is quite clear
that matches themselves are not cause of the lung cancer and our causal explanation would
be completely wrong. What is the reason for this error?

Take a look at the Figure 5. Of course, the real cause of lung cancer is smoking. The problem
is that smoking is associated with carrying matches, but is not caused by carrying matches.
Smoking induces lung cancer. We will therefore see a positive association between carrying
matches and lung cancer, but causal interpretation of this association would be inappropriate.
In such cases we call the real cause associated with a putative risk factor confounding
variable (confounder).

These are the three necessary characteristics of a confounder (Rothman et al., 2008):
1. A confounding factor must be a risk factor for the disease.

2. A confounding factor must be associated with the exposure under study in the
source population (the population at risk from which the cases are derived).

3. A confounding factor must not be affected by the exposure of the disease. In
particular, it cannot be an intermediate step in the causal path between the exposure
and the disease.

EXPOSURE DISEASE
Carrying matches ——— Lung cancer
Associated with exposure, Associated outcome,
but not consequence of exposure . independent of exposure
q P Smoking P P
CONFOUNDER

Figure 5. Causal diagram for lung cancer causation example.

5.2 Causation in epidemiology

Our aim in epidemiology is to prevent and control diseases and to promote health and, as
emphasised above, we need to know the disease causes. Cause of a specific disease event
may be defined as “an antecedent event, condition, or characteristic that was necessary for
the occurrence of the disease at the moment it occurred, given that other conditions are
fixed” (Rothman and Greenland, 2005). Unfortunately, most identified causes are neither
necessary nor sufficient to produce a disease; the interaction of many genetic and
environmental factors is almost inevitably involved in any disease causation. However,
removal of an identified risk factor may still lead to the prevention of a significant proportion
of disease.

18



Before an association is assessed for the possibility that it is causal, other explanations, such
as chance, bias and confounding, have to be excluded (Bonita et al., 2006). To have a
framework to think about potential causes, different ‘considerations for causation’ were
proposed (e.g., Table 3) on the basis of aspects of association recommended by Hill (1965)
to consider before deciding on potential causation.

Table 3. Considerations for causation (Bonita et al., 2006)

Temporal relation Does the cause precede the effect? (essential)
o Is the association consistent with other knowledge?
Plausibility . . . . .
(mechanism of action, evidence from experimental animals)
Consistency Have similar results been shown in other studies?
What is the strength of the association between the cause and the effect?
Strength

(relative risk)

Dose-response . . . o
p Is increased exposure to the possible cause associated with increased effect?

relationship
Reversibility Does the removal of a possible cause lead to reduction of disease risk?
Study design Is the evidence based on a strong study design?

Judging the evidence =~ How many lines of evidence lead to the conclusion?

It is necessary to acknowledge that the best evidence on causation could be provided by
randomised controlled trials, as the randomisation is the best way to control confounding.
However, such experiments are not always appropriate or even feasible (consider an example
of a randomised controlled study assigning people to smoking or non-smoking). Therefore,
observational studies have their important role in epidemiology; nevertheless, we need to
bear in mind their potential risk of bias. Most notably, the ability of cross-sectional and
ecological studies to confirm causation is rather weak. Of course, a study of any type must be
well designed and performed before we can consider its results as a basis for causation.

6. Handling confounding in practice

6.1 Design phase

Randomisation is the essential element of randomised controlled trials. It means a random
allocation of studied individuals to studied exposures (this is possible only in experimental
studies). It enables us to create groups that should differ solely in the exposure under study;
the distribution of other variables, notably confounders (both known and unknown), should
be similar in both groups. We can therefore remove the association between exposure and
confounders and thus prevent confounding.

Restriction is a very simple and effective way to limit confounding. If we can restrict the
access to the study only to patients with a particular level of the selected confounder (e.g.,
particular race, age range, etc.), we prevent the confounder from varying and therefore
exclude confounding. The main disadvantage of restriction is lowering the number of
available subjects, possibly making the study unfeasible, when the resulting sample size is
insufficient. Also, the generalization of the study results will be limited when using restricted
study sample.
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Matching refers to the selection of study participants in a reference series (i.e., unexposed
subjects in a cohort study, controls in a case-control study) so that the selected subjects
match the index series (exposed/cases) individuals with respect to one or several
confounding factors values. Therefore, using matching, we are making the distribution of
confounding factors similar in both study groups (Rothman et al., 2008).

6.2 Analysis phase

The simplest analysis for the assessment of confounding is stratification, i.e., creating
separate estimates of effect for each group (stratum) of individuals according to values of the
particular confounder.

Standardisation is taking a weighted average of stratum-specific outcomes (e.g., incidence
rates) according to a defined standard — set of weights. The formula for a standardised rate is
(Rothman et al., 2008):

> wl,

w= ZWI

where w; is the weight for stratum i and |; is the rate in stratum i; w; is usually the amount of
person/time observed in stratum i of a standard population. Standardisation is often used to
compare incidence rates between countries (using European or world standard population
weights) with different age structures of population.

Supposing that stratum-specific estimates don’t substantially differ from each other (such
situation would suggest interaction — effect modification), estimates of exposure effect can
be pooled using standard epidemiological techniques. Pooled estimates are weighted
averages of stratum-specific estimates. AS opposed to standardisation, pooling weights are
applied to effect measures instead of occurrence measures and assume homogeneity of these
effect measures between strata. Moreover, weights in pooling are internal and reflect the
amount of information in each stratum (e.g., weights inversely proportional to stratum-
specific estimates variance). As an example, consider computation of Mantel-Haenszel
pooled estimate of OR (Rosner, 2006):

a -d,
27
ORyy =~~~

ZL

where a;-d; reflects number of patients in a 2x2 contingency table (like Table 1) created for
the stratum i. For other estimators of pooled effect measures and associated variance see
Rothman et al. (2008), for example.

The basic tabular methods are essential and often sufficient in epidemiologic data analysis;
however, they fail if we need to examine many variables simultaneously. Under that
condition, the usual method of choice is regression modelling. This topic will be addressed in
detail in the following lesson.
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*kxk

Example 2. Hypothetical study examining the relationship between lung-cancer incidence
and heavy drinking (Rosner, 2006):

Drinking status

COMPLETE STUDY GROUP
Heavy drinker Nondrinker Total
Lung cancer Yes 33 27 60
No 1,667 2,273 3,940
Total 1,700 2,300 4,000

Odds ratio: 1.667 (95% CI 0.998-2.782).

The crude analysis suggests that drinking is a risk factor of lung cancer. Let us now
investigate odds ratio separately for smokers and nonsmokers:

Drinking status

SMOKERS
Heavy drinker Nondrinker Total
Lung cancer Yes 24 6 30
No 776 194 970
Total 800 200 1,000

Odds ratio: 1.000 (95% CI 0.403-2.480).

Drinking status

NONSMOKERS
Heavy drinker Nondrinker Total
Lung cancer Yes 9 21 30
No 891 2,079 2,970
Total 900 2,100 3,000

Odds ratio: 1.000 (95% CI 0.456-2.192).

We can now see that the relationship between lung cancer and drinking was completely
confounded by smoking (causally related to lung cancer and associated with drinking). Thus,
the stratification disclosed that, in fact, drinking is not associated with lung cancer in neither
smokers nor non-smokers. As we see that odds ratio is similar in both groups, we may
proceed to pooling of results for different strata using Mantel-Haenszel estimator:

24-194 9-2,079

+
OR... —_1000 3000 _ 10893
M 776:6 89121 10.893

1000 3000

*k*

21



7. References

dos Santos Silva 1. Cancer epidemiology: principles and methods. Lyon: International Agency for
Research on Cancer. 442 p. ISBN 92-832-0405-0

Bonita R, Beaglehole R, Kjellstrom T. Basic epidemiology. 2" ¢d. Geneva: WHO, 2006. 213 p- ISBN
978-92-4-154707-9.

Hill AB. 1965. The Environment and Disease: Association or Causation? Proceedings of the Royal
Society of Medicine 58:295-300.

Katz M. 2006. Multivariable Analysis. A practical Guide for Clinicians. 2™ ed. Cambridge: Cambridge
University Press. 203 p. ISBN 978-0-521-54985-1.

Rothman KJ, Greenland S. 2005. Causation and causal inference in epidemiology. American Journal of
Public Health 95: S144-50.

Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3 ed. Philadelphia: Wolters Kluwer
Health/Lippincott Williams & Wilkins, 2008. 758 p. ISBN 978-0-7817-5564-1.

Rosner B. Fundamentals of Biostatistics, 6 ed. Belmont: Thomson Higher Education, 2006. 868 p.
ISBN 978-0-495-06441-1.

Saracci R. 2010. Introducing the history of epidemiology. In: Olsen J, Saracci R, Trichopoulos D
(eds.). Teaching Epidemiology - A guide for teachers in epidemiology, public health and clinical
medicine 3rd ed. Oxford: Oxford University Press, 2010. 576 p. ISBN 978-0-19-923947-4.

Woodward M. Epidemiology: study design and data analysis. Boca Raton: Chapman & Hall/CRC,
1999. 699 p. ISBN 1-58488-009-0.

22



Regression modelling in biomedical studies

Hynek Pikhart

Department of Epidemiology & Public Health, University College London;
e-mail: h.pikhart@ucl.ac.uk

Abstract
This contribution should help students to be able to:

e Identify variables which might be included in the statistical analysis using
regression modelling

e Formulate a modelling strategy to build proper regression model

e Use a logistic model to compare the log odds of disease in 2 groups and to
estimate a crude odds ratio for a binary outcome

e  Perform statistical tests of the null hypothesis (= there is no association
between the exposure and outcome)

e Use a logistic model with one exposure — either continuous or categorical
with 2 or more levels

e Use a logistic model to examine the association between the exposure and
outcome adjusting for confounders, assuming no effect modification, and
explain the implications of such assumption

e  Use likelihood ratio test in multiple regression models

e Use a logistic regression model that includes interaction parameters and
interpret the parameters representing interaction in regression models

Key words

Epidemiology, regression modelling, multiple logistic regression, confounding,
interaction

1. Strategies of the analysis

Introduction

In this section you should think about various issues covered in different parts of statistical
courses and about practicalities of the analysis related to the range of methods and
techniques which you have discussed previously. We consider what steps in the analysis you
need to take, what techniques you should use at the beginning of your data analysis, and how
to design and formulate modelling strategy (including decisions on possible confounders and
effect modifiers)

Before you start the analysis

You should have clearly defined outcome and the main exposure (or exposures) in your data
(this should be clear from your hypothesis/hypotheses). In such situation you know which
variables are the main variables of your interest.
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First step

You need to start with simple descriptive analysis — you should get to know your data, get
the feeling for your data. You should firstly see what data are available in your dataset. You
might then examine frequency distribution of the categorical data and you can try to
graphically display your main variables. You can also look at the summary statistics of your
continuous variables. Examining frequency distributions and graphs you should be able to
identify possible errors in the data, find outliers in your data and see whether you have any
missing data. This should also help you to decide how to categorise and/or regroup some
variables.

Second step

Simple univariate analysis should be followed by bivariate analysis. Simple cross tabulations
of two variables will give you the feeling for the crude associations in the dataset and will
allow you to see how many events (cases of disease, deaths) you have in each category of
exposure. The cross-tabulations may also help to find further potential errors in the dataset.

Third step

Use Mantel-Haenszel method for identification of possible confounders and effect modifiers.
M-H method has possibly less power than regression technique however it gives you clearer
results — it gives you stratum specific estimates in addition to overall pooled result, and it
also gives you the test for effect modification.

Final step

Only as a final step, you should use regression modelling. By now you should have identified
potential confounders and potential effect modifiers and you need to evaluate their effects in
more complex models (than those available in M-H statistical technique). You need to
consider whether the variable has any effect on the outcome, whether the variable has any
effect on the association between main exposure(s) and the outcome. Before considering
variable to be confounder you need to test whether such variable does not act as an effect
modifier in the association between main exposure(s) and the outcome. In large datasets,
with large number of possible confounders, you need to consider which variables should be
included in regression model, you need to assess the associations between potential
confounders and effect modifiers, and you need to assess potential dose-response effects of
variables.

2. Logistic regression

Introduction

Logistic regression is more general method for analysis of binary outcomes than chi-square
method since it allows the inclusion of continuous explanatory variables, inclusion of more
than one exposure and the assessment of interaction (effect modification) between variables.

Revision — odds and odds ratio
Odds of disease and odds ratio can be defined in following way:

For a defined population and time period, it is the number of cases divided by the number of
people who did not became a case
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Non cases number without the disease

Example of odds:

CvVvD
No 18,954
Yes 2,676
Total 21,630

The odds of CVD is calculated as: Odds = 2,676/18,954 = 0.14

The examples shown in this section were calculated in statistical package Stata but most
statistical packages can calculate similar outcomes. We are not interested in the syntax of
commands — we need to focus on interpretation of results.

[95% Conf. Interval]

0.13558 0.14702

| Same odds as the one above calculated by hand

Odds in exposed group
0dds: ratio (OR) = ommm o oo o i o o e o s ion
Odds 1in unexposed group

Example:

TV watching
Obesity <3 hours a day >= 3 hours a day Total
Non obese 1,270 527 1,797
Obese 409 219 628
Total 1,679 746 2,425

OR= Oddsey,/ OddSnexp

e Oddsynexp =409/1270=0.32 (odds of obesity among those watching TV <3hours a
day)

e Oddsey, =219/527=0.42 (odds of obesity among those watching TV >=3hours a day)
e OR=0.42/0.32
e OR=129
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And in STATA:
mhodds obesity twv

1.565541

Comparing: >=3kgurs a day of TV vs <3 hour

And we also get p value related to the appropriate null hypothesis — p=0.0095

Exercise: Can you interpret these values?

Let’s return to odds ratios. We can express formula in other way:

Odds in exposed group = Odds in unexposed group x Odds ratio(of exposure)
We can now logarithm the formula and get

Log(Odds in exposed group) = log(Odds in unexposed group) + log(Odds ratio)
Logistic regression model

Modelling log odds is referred to as logistic regression, and the models are named as logistic
models.

Why do we use log odds when fitting statistical model: The reason for modeling log odds
rather than risk or odds is that log odds can take any value (negative or positive) while risk
lies between 0 and 1 and odds lies between 0 and infinity. When using statistical model it is
easier to model a quantity which is unconstrained (which avoids the possibility to predict
impossible values).

If we come back to our formula:
Log (0ddSeyp)=L0g(0dds nexp)+10g(OR)

We will call Log(odds,nexp) as baseline (log odds of disease in the unexposed group) and
log(OR) as the effect of exposure (our main interest).

In summary, in logistic regression we fit regression model (with intercept and slope) for the
log odds of disease as the outcome measure.

The model is fitted using a mathematical technique called maximum likelihood which takes
into account that the variation of proportion has a binomial distribution.

A logistic regression with a binary exposure variable
Example

We want to see whether sex is risk factor for the all-cause mortality in population-based
study:
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mortality

|

| 0 1 | Tota
___________ e —————————
women 0 | 119 31 | 150

| 79.33% 20.67% | 100.0
___________ e e s o s i
men 1| 239 131 370

| 64.59 35.41% | 100.0
___________ e e e e R e S R e s
Total | 358 162 | 520
| 68.85% 31.15% | 100.0%

Our outcome is all-cause mortality. Our exposure is gender. Let’s calculate odds of the
outcome in both genders.

Odds (women) =31 /119=0.26
Odds (men) = 131 /239 = 0.548
OR (men vs women) = 0.548/0.26 = 2.11

Now, we can calculate logistic regression in our statistical package. In Stata, output
would look like this:

logit mort i.sex

Logistic regression Number of obs = 520

LR chi2 (1) = 11.35

Prob > chi2 = 0.0008

Log likelihood = -316.89647 Pseudo R2 = 0.0178
mort | Coef. Std. Err. Z P>|z| [95% Conf. Interval

_____________ A o
Isex_1 | .7438701 .2290832 3.25 0.001 .2948753 1.192865

cons | -1.345136 .2016468 -6.67 0.000 -1.740357 -.9499159

The constant refers to the log odds in the baseline group. The coefficient gives the Maximum
likelihood estimate of the parameter.

In odds= -1.345136+0.7438701 x sex (0”women” 1”men”)

In odds (unexposed=women) = -1.345+0.744 x 0= -1.345

odds (unexposed) = exp(-1.345)=0.26

In odds (exposed=men) = -1.345+0.744 x 1=-0.601

odds (exposed) = exp(-0.601)=0.548

OR = odds(exposed)/odds(unexposed) = 0.548/0.26 = 2.10

If we take the estimate from the STATA model, 0.74387, we will see that

exp (0.74387) = 2.10

STATA can provide the Odds Ratios (OR) which are more familiar and easy to interpret.
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logistic mort i.sex

i.sex _Isex 0-1 (naturally coded; _Isex 0 omitted)
Logistic regression Number of obs = 520
LR chi2 (1) = 11.35
Prob > chi2 = 0.0008
Log likelihood = -316.89647 Pseudo R2 = 0.017€
mort | Odds Ratio Std. Err z P>|z| [85% Conf. Interwval]
_____________ e e R
_Isex 1 | 2.104063 .4820054 325 0.001 1.342958 3.296512

We can see that we got the same OR as in previous calculation.
Similarly, we can calculate 95% confidence interval from logit model:

95%CI for OR = exp(0.2948) to exp (1.1928) = 1.34 to 3.30 which is identical to the 95% CI
from logistic model.

Finally, we can use Z statistic (that can be compared with a Normal distribution) for
significance testing of the strength of the association:

We use the Wald test to test the null hypothesis that the true parameter value is O (i.e., there
is no association)

Z statistic is calculated as
Z = coefficient/SE

Z=1In(OR)/SE (INOR) Here we must use coefficient and SE from original, logit
model!

We compare z with a Normal distribution
For our example
Z=0.744/0.229 = 3.25
p=0.001 we reject the null hypothesis of no association
Testing for association using the Likelihood ratio test
For each logit regression model you can calculate “log likelihood” statistics
The Likelihood Ratio Test (LRT) —

e LRS (likelihood ratio statistics) = 2 (L1-L0), where L1 is maximised log likelihood
of model with variable you want to test and LO is maximised log likelihood of
model without the variable

e LRS is distributed as chi-square distr. on 1 df (if we test effect of 1 variable, later
we will try to test composite effect of more variables)
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STATA:

logistic mort i.sex * more complicated model
i.sex _Isex 0-1 (naturally coded; _Isex 0 omitted)
Logistic regression Number of obs = 520
LR chi2 (1) = 11.35
Prob > chi2 = 0.0008
Log likelihood = -316.89647 Pseudo R2 = 0.0176
mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____________ Y R S A S o e S e e R
Isex 1 | 2.104063 .4820054 3.25 0.001 1.342959 3.296512
est store a * store estimates
logistic mort * less complicated model
Logistic regression Number of obs = 520
LR chi2(0) - -0.00
Prob > chi2 = x
Log likelihood = -322.56957 Pseudo R2 = -0.0000
mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interwval]
_____________ e e e e e e 2
est store b * store estimates
lrtest b a * compare estimates of models a and b
Likelihood-ratio test LR chi2 (1} = 11.35
(Assumption: b nested in a) Prokb > chi2 = 0.0008

When we compare model including variable sex and model without this variable, Likelihood
ratio test again shows importance of sex on mortality in this dataset.

Important points:
- LRT can be used even in more complicated situations (we will see later)

- We can only use LRT test if both compared models have same number of
individuals used in regression analysis (you must check that there are no missing
values in variable(s) tested!)

- Two compared models must be nested (exposures used in less complicated model
are subset of exposures used in more complicated model)

Logistic regression for the comparison of more than 2 groups

We have categorical exposure that has more than two categories. Let’s come back to our
example and use variable age. We have 3 age groups (50 years and younger, 51-65, older
than 65) and we want to see the effect of age (grouped to 3 categories) on all-cause mortality.

Firstly, let’s tabulate two variables:
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mortality

|
agegp | 0 1] Total
___________ +______________________+__________
1 142 16 | 158
| 89.87% 10.13% | 100.00%
___________ R e e G S s e s
2 | 116 56 | 172
| 67.44% 32.56% | 100.00%
___________ o e e ————
3| 100 90 | 190
| 52.63% 47.37% | 100.00%
___________ +______________________+__________
Total | 358 162 | 520
| 68.85% 31.15% | 100.00%

We can see that age seems to be associated with mortality (10% of dead individuals in the
youngest age group, 33% in the middle group and 47% in the oldest group). Let’s run
logistic regression:

logistic mort i.agegp

i.agegp _Iagegp 1-3 (naturally coded; Iagegp 1 omitted)
Logistic regression Number of cbs = 52C
LR chi2(2) = 61.60
Prob > chi2 = 0.0000
Log likelihood = -291.76873 Pseudo R2 = 0.0955
mort | Odds Ratio Std. Errx z P>lz| [95% Conf. Interval]
_____________ Ol oV o e ke i e e S S R
_Iagegp 2 | 4.284483 1.327637 4,70 0.000 2.334187 7.86431¢9
_raqeqy/' 7.9875  2.404932 6.90 0.000 4.42716 14.41108

Age 51-65 vs 50 and less Age 65+ vs 50-

_lagegp_2 and _lagegp_3 are indicator variables created by STATA for each non-baseline
value of categorical variable for the purposes of analysis. Indicator variable take only values
0and 1.

_lagegp_2 is an indicator variable that equals 1 for agegp=2 and equals 0 otherwise
_lagegp_3 is an indicator variable that equals 1 for agegp=3 and equals 0 otherwise

So, the 4.28 is the odds ratio comparing individuals in age group 2 (51-65 years) vs those in
age group 1 (baseline; 50 and less). The remaining columns have the same meaning as
previously, so we can see that 95% CI for OR is 2.33-7.86, and OR is statistically
significantly different from 1.00 (no association).

Similarly, 7.99 is the odds ratio comparing individuals in age group 3 (65+) vs those in age
group 1 (baseline)!

The estimated OR always compares appropriate category of the variable with the baseline!
So far, we have tested whether mortality in age group 2 differs from mortality in age group 1
and whether mortality in age group 3 differs from mortality in age group 1. No we are

interested in composite effect of age. In other words, we want to know whether age is
statistically associated with mortality. We need to use likelihood ratio test.
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logistic mort i.agegp * more complicated model

i.agegp _TIagegp 1-3 (naturally coded; _Iagegp 1 omitted)
Logistic regression Number of obs = 520
LR chiz (2} = 61.60
Prob > chi2 = 0.0000
Log likelihood =%291.76873 Pseudo R2 = 0.0955
mort | Odds Ratio Std. Err Z P>|z| [95% Conf. Interwval]
_____________ e o e e e e e e
_Iagegp_2 | 4,284483 1.327637 4.70 0.000 2.334187 7.864319
_TIagegp 3 | 7.9875 2.404932 6.90 0.000 4.42716 14.41108

est store a

logistic mort * less complicated model
Logistic regression Number of obs = 520
LR chi2(0) = -0.00

Prob > chiz2 =

Log likelihood = Pseudo R2 = -0.0000

est store b
lrtest b a * likelihood ratio test

Likelihocd-ratic test LR chi2{2) = 61.60
(Assumption: b nested in a) Prob > chi%/:,//AB.DOOO
2xdiff between log likelihoods
We should repeat several basic points:
- 2 models must be nested
- Same number of subjects in both models
- degrees of freedom = 2
= equal to difference in number of variables between 2 models
(we had 2 dummy variables for agegroup, so 2 d.f.)
Logistic regression with quantitative measure of exposure

We can have continuous variable as exposure (systolic blood pressure, blood cholesterol,
height). We want to estimate the effect of continuous exposure on binomial outcome.

We will use diastolic blood pressure (DBP) in our example:

Firstly, let’s check whether we have DBP values for all individuals and whether we do not
have any outliers (unusually small or large values):

sum dbp
Variable | Cbs Mean Std. Devw. Min Max

dbp | 520 86.37308 g.8363 73 107

We can see that we have reasonable values for all 520 subjects. We can now run regression
model:
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logistic mort dbp

Logistic regression Number of obs = 520
LR chi2 (1} = 90.14
Prob > chi2 = 0.0000
Log likelihood = -277.50184 Pseudo R2 = 0.1397

mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]

The estimate of the exposure effect on mortality per 1 unit increase in DBP

We can say that odds of mortality increases 1.11-times with 1 unit increase in diastolic blood
pressure. OR=1.11 represents the effect of DBP per 1 mmHg increase in DBP. We can now
use 95% CI and p-value in the same way as in previous examples.

If we want to estimate OR for 10 units increase in DBP the effect will be (1.11)'°= 2.83

3. Multiple logistic regression

Logistic regression allows using several confounding variables at the same time, allows
inclusion of possible effect modifiers and allows using continuous variables as confounding
factors.

Adjusting for confounding using multiple logistic regression

Let’s return to our example (sex, age and diastolic blood pressure as possible risk factors for
all-cause mortality)

We want to fit a logistic regression model including terms for both sex and age group at the
same time.

We can use following STATA command

1.agegp i.sex

We list both exposures in the command

¥i: logistic mort

i.agegp _Tagegp_1-3 (naturally coded; _Tagegp 1 omitted)
i.sex _Isex 0-1 (naturally coded; _Isex 0 omitted)
mort | Odds Ratio S5td. Err. z P>|z| [95% Conf. Intervall]
_____________ i e S S o e i i S
_Iagegp 2 | 6.28714 2.014746 5.74 0.000 3.354913 11.78216
_Tagegp_3 | 11.12581 3.463072 7.74 0.000 6.044813 20.47768
_Isex 1 | 3.512644 .8555701 5.16 0.000 2.1792506 5.661874

How should we interpret such results?

The parameter estimate for sex (odds ratio 3.51) represents the odds ratio for the effect of sex
(men vs women) adjusted for any confounding effect of age group. In simple way we can
imagine that we create separate tables and calculate odds ratios of the effect of sex on
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mortality for each age group, and we make pooled estimates ~ weighted average of stratum
specific odds ratios.

The age parameters can be interpreted in similar way: ORs of 6.29 and 11.12 represent the
odds ratios for the effect of age (51-65 vs 50- and 65+ vs 50-) on all-cause mortality adjusted
for any confounding effect of sex.

We need to mention one important assumption — we assume that there is no interaction/effect
modification between the effects of age group and sex (M-H methods provides us with
reminders about the effect modification while logistic regression does not). In other words
we assume that the effects of sex and age group on mortality are independent (or, in other
words, we assume that the effect of sex on all-cause mortality is same in all categories of age
and the effect of age on all-cause mortality is same in both genders).

Hypothesis testing in multiple logistic regression
We can test different hypotheses in multiple logistic regression.
a) the composite effect of age on mortality (when sex taken into account)

We want to test following null hypothesis: there is no association between age group and
mortality after taking sex into account. We will use likelihood ratio test for testing this
hypothesis. We will use similar set of commands as in last session.

#xi: logistic mort i.agegp i.sex * more complicated model
i.agegp _Iagegp_1-3 (naturally coded; _Iagegp_ 1l omitted)
i.sex _Isex 0-1 (naturally coded; _Isex_0 omitted)
Logistic regression Number of obs = 520
LR chi2(3) = 90.89
Prob > chiZ2 = 0.0000
Log likelihood = -277.1232 Pseudo R2 = 0.1408
mort | Odds Ratio Std. Err z P>|z| [95% Conf. Interval]
_____________ e e e e o A e e e R e
_Tagegp 2 | 6.28714 2.014746 5.74 0.000 3.354913 11 7821e
_Iagegp 3 | 11.12581 3.463072 7.74 0.000 6.044813 20.47768
_Isex_ 1 | 3.512644 .8555701 5.16 0.000 2.179256 5.661874
. est store a
. %¥i: logistic mort i.sex * less complicated model
i.sex _Isex 0-1 (naturally coded; _Isex 0 omitted)
Logistic regression Number of obs = 520
LR chi2 (1) = 1135
Prob > chi2 = 0.0008
Log likelihood = -316.89647 Pseudo R2 = 0.0176
mort | Odds Ratio Std. Err. z BP>|z| [95% Conf. Interval]
_____________ I I N N T - e
_Isex 1 | 2.1040863 .4820054 325 0.001 1.342959 3.296512

. est store b

lrtest b a
Likelihood-ratic test
(Assumption: b nested in a)

LR chiZ(2)
Prob > chiz2

The result of the likelihood ratio test tells us that there is very strong evidence against the
null hypothesis (p<0.001) — there is strong evidence that, taking sex into account, there is an
association between age group and odds of death.
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This LRT test tells us whether there is evidence that a variable is a risk factor — it is not a
test for whether variable is a confounder!

b) the composite effect of age and sex on mortality

This time, we want to test following hypothesis: there is no composite effect of age group
and sex on mortality. We will again use likelihood ratio test for testing this hypothesis but we
will compare different models:

xi: logistic mort i.agegp i.sex * more complicated model
i.agegp _Iagegp_1-3 (naturally coded; _Iagegp 1 omitted)
i.sex _Isex 0-1 (naturally coded; _Isex 0 omitted)
Logistic regression Number of obs = 520
LR chi2(3) = 90.88
Prob > chiZ2 = 0.0000
Log likelihood = -277.1232 Pseudo RZ2 = 0.1408
mort | Odds Ratio Std. Err z P>|z| [95% Conf. Interval]
_____________ s e o, e o, 3 . o i e
_Iagegp 2 | 6.28714 2.01474¢ 5.74 0.000 3.354913 11.7821¢
_Iagegp 3 | 11.12581 3.463072 7.74 0.000 6.044813 20.47768
_Isex 1 | 3.512644 .8555701 5.16 0.000 2.179256 5.661874
est store a
Xxi: logistic mort * less complicated model
Logistic regression Number of obs = 520
LR chi2(0) = -0.00
Prob > chi2 = ¥
Log likelihood = -322.56957 Pseudo R2 = -0.0000
mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interwval]

est store b

lrtest b a
Likelihood-ratio test
(Assumpticon: b nested in a)

LR chi2(3) = 90.89
Prob > chi2 = 0.0000

The result of the likelihood ratio test tells us that there is very strong evidence against the
null hypothesis (p<0.001) — there is strong evidence that there is composite effect of sex and
age on all-cause mortality.

This type of hypothesis testing is particularly useful when we have blocks of variables of
similar type or origin (for example several SES measures or several health behaviours) and
we want to test their composite effect on health outcome of interest.

Interaction in logistic regression

So far, we needed to make the assumption that the effect of the exposure is the same (or
similar) across the strata (=for different categories of confounder). We need to test such
assumption in regression model (you may remember test for heterogeneity of odds ratios in
Mantel-Haenszel analysis).

Let’s return to our example. For simplicity, let’s combine people older than 60 years into one
group = we will have only 2 age groups. We want to test whether the effect of age group on
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mortality is same among men and women (we want to test whether stratum-specific ORs are
homogenous or not.

As always, we will construct 2-way tables first:

MEN: WOMEN :
| mortality | mortality
agegp | 0 11 Total agegp | 0 s | Total
——————————— e e it e e
11 128 38 | 166 1| 66 ol | 68
| 77.11 22.89 | 100.00 | 97.06 2.94 | 100.00
——————————— e et e e
2| 117 a3 | 204 2 | 53 29 | 82
| 54.41 45.59 | 100.00 | ©4.63 35.37 | 100.00
——————————— R e s st
Total | 239 131 | 370 Total | 119 31 | 150
| 64.59 35.41 | 100.00 | 79.33 20.67 | 100.00
We can calculate stratum-specific odds ratios
. xi:logistic mort i.agegp
We specify that regression will be conducted only among men
i.agegp _Tagegp_1-2 (naturally coded; _Iagegp_1 omitted)
Logistic regression Number of obs = 370
LR chi2 (1) = 21.12
Prob > chiZ2 = 0.0000
Log likelihood = -229.8087 Pseudo R2 = 0.0438
mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interwval]
_____________ e ———————
_Tagegp_2 | 2.822191 .6551494 4.47 0.000 1.790551 4.448218
xi:logistic mort i.agegp if
Now, we specify that we will use only women
i.agegp _Iagegp_1-2 (naturally coded; _Tagegp_1 omitted)
Logistic regression Number of obs = 150
LR chi2 (1) = 28.26
Prob > chi2 = 0.0000
Log likelihood = -62.296944 Pseudo R2 = 0.1849
mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____________ e e e e e e e e e e
_Iagegp 2 | 18.0566 13.61451 3.84 0.000 4.11944 79.1469
MEN: OR=2.82 WOMEN: OR= 18.06

These two ORs do not seem to be similar but we need to test this difference formally — it is
possible for example that this difference is seen just because there are relatively few younger
women in the sample who have already died (and we can see that 95% CI for the OR in
women is extremely wide).

We need formal test of null hypothesis: stratum specific ORs are homogenous (there is no
difference between stratum specific odds ratios)
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Firstly we run the more complicated model = model assuming interaction between age and
sex = model assuming that the effect of age on mortality depends on sex (and also assuming
that the effect of sex on mortality depends on age)

“** is marking the interaction
between sex and agegroup

. xi:logistic mort
i.sex Isex 0-1 (naturally coded; _Isex 0 omitted)

i.agegp _Iagegp_l-z (naturally coded; _Iagegp_l omitted)
i.sex*i.agegp _IsexXage # _# (coded as above)
Logistic regression Number of obs = 520
LR chi2 (3) = 60.73
Prob > chi2 = 0.0000
Log likelihood = -292,20564 Pseudo R2 = 0.0941
mort | Odds Ratio Std. Err z P>|z| [95% Conf. Interval]
_____________ e
_Isex 1 | 9.796875 7.260721 3.08 0.002 2.292133 41.87312
_Iagegp 2 | 18.0566 13.61437 3.84 0.000 4.1195 79.14576
_IsexXage ~2 | .1562969 .1233043 =235 0.019 .0332988 .7336222
. est store a
Then we ran simpler model = model assuming no interaction between age and sex
#®i:logistic mort i.sex i.agegp
i.sex _Isex 0-1 (naturally coded; _Isex 0 omitted)
i.agegp _Tagegp_1-2 (naturally coded; _TIagegp 1l omitted)
Logistic regression Number of obs = 520
LR chi2(2) = 52.84
Prob > chi2 = 0.0000
Log likelihood = -296.1497 Pseudo R2 = 0.0818
mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interwvall]
_____________ e e e e e e e e e
Isex 1 | 2.213595 .5250567 3.35 0.001 1.39058 3.523709
Iagegp 2 | 3.70086 .789548 6.13 0.000 2.43616 5.622112
est store b
Finally we use likelihood ratio test to compare these two models
lrtest b a
Likelihood-ratio test LR chiZ2 (1} = 7.89
(Assumption: b nested in a) Prob > chi2 = 0.0050

The result of likelihood ratio test tells us that there is evidence against null hypothesis
(p=0.005) and we should not use model assuming independent effect of age and sex on
mortality = we should report stratum specific odds ratios of the effect of age and sex on
mortality:

#i:logistic mort i.sex*i.agegp

mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o s o
_Isex 1 | 9.796875 7.260721 3.08 0.002 2.292133 41.87312
_Iagegp_2 | 18.0566 13.61437 3.84 0.000 4.1195 79.1457¢
_IsexXage ~2 | .1562969 .1233043 -2.35 0.019 .0332988 . 7336222
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Interpretation:

e Among younger people (60 years or less): the odds ratio for the effect of gender
(men vs women) is 9.80 (_lIsex_1)

e Among women: the odds ratio for the effect of age (older vs younger) is 18.06
(_lagegp_2)

e Among older people (above 60): the odds ratio for the effect of gender (men vs
women) is 9.80 multiplied by 0.156 (IsexXagegp_2) = 1.53

e Among men: the odds ratio for the effect of age is 18.06*0.156 = 2.82
Interpreting interaction terms

If there is important interaction in the model, it does not make sense to report the effect of
the exposure on the outcome adjusted for confounder — the proportional odds assumption is
not correct. We must report stratum-specific exposure effects (in both directions of
interaction).

We will continue with confounding and interaction in multiple logistic regression case study
session.
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Public sources of cancer epidemiology
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Abstract

Cancer epidemiology can be regarded as one of the most important and most frequently
analyzed topics in the field of human risk assessment. Demand for cancer epidemiology
data cannot be easily fulfilled by blind outputs bearing only primary population-based
data. Therefore, development of the professional information sources providing the data
in user friendly and accessible form is required. Information sources are nowadays
available in the form of analytical tools, which enable access to different types of data
sources on national and international level. In the Czech Republic it is System for
Visualization of Oncology Data (SVOD), on the international level it is
CANCERMondial by International Agency for Research on Cancer (IARC), which
joins access to different international sources dealing with cancer epidemiology.
Thanks to these tools is the information on cancer epidemiology widely and easily
accessible.

Key words

Cancer, epidemiology, information tools.

1. Introduction

Cancer epidemiology can be regarded as one of the most important and most frequently
analyzed topics in the field of human risk assessment. It is not only due to remarkable public
concern about the growing population risk; cancer incidence and mortality are evident and
clearly attainable endpoints for risk and health care assessment studies. We can enter this
field from the viewpoint of risk factors as agents initiating carcinogenesis, but
epidemiological parameters can also retrospectively indicate hazardous population impact on
a large scale. However, the indication based on epidemiological data of course requires
sufficient data sources. It means having representative long-term profiles of incidence and
mortality as well as very good awareness of most important risk factors.

We need easily available large data sets, which themselves are, however, very expensive and
typically not directly available. That is why we must aggregate at least cancer and
demographic data in order to attain relevant age-adjusted profiles of epidemiologic
parameters. It is also the main reason for growing interest in accessibility of population-
based data, recently expressed by many professional groups (health care managers,
environmental experts, risk assessors). According to our experience, however, their demand
for data cannot be easily fulfilled by blind outputs bearing only primary population-based
data. Therefore, development of professional web portals that offer automatically generated
and verified epidemiological analyses on cancer incidence and mortality is needed.
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2. Sources of information on cancer epidemiology

In the background of the information sources on cancer epidemiology there are three crucial
types of population-based data:

e cancer incidence data — collected in cancer registries

e cancer mortality data — collected in specific databases of deceased persons or in
cancer registries

e data on population structure — collected by governmental statistical offices

All these data sources should be representative for the population of interest; moreover,
cancer registries should fulfil international recommendations and criteria on data structure
and data completeness. On the basis on such reliable population-based data sets,
comprehensive information sources on cancer epidemiology on regional, national or
international level can be developed.

2.1. Sources of cancer epidemiology data in the Czech Republic

The crucial data source for cancer epidemiology in the Czech Republic is Czech National
Cancer Registry (CNCR), which is managed and guaranteed by the Institute of Health
Information and Statistics of the Czech Republic (IHIS CR) at the Czech Ministry of Health.
Standardized collection of cancer data in CNCR started in 1977 and provides representative
long-term trends for most of the cancer diagnostic groups. Nowadays, the database consists
of more than 1.8 million cases stratified according to main risk factors and diagnostic
descriptors including TNM classification of tumours. Basic outputs of CNCR are available in
annual reports of IHIS CR (IHIS CR, 2013). To make these unique data source accessible for
specialists and also for public in user friendly form, unique automated system of on-line
analyses was developed. This system is located at the web portal SVOD (System for
Visualization of Oncology Data), which is available at http://www.svod.cz (Dusek et al.,
2005).

2.1.1. SVOD - System for Visualization of Oncology Data

The portal SVOD (System for Visualization of Oncology Data) is aimed to provide user-
controlled analyses over available data sources (e.g. cancer epidemiology, demographic
data). All analytic functions are accompanied with proper visualisation — graphical and table
protocols that can be further exported and used. The portal functions are targeted primarily
for health care managers and risk assessors working in the field of human and ecological risk
assessment, but all outputs are designed to be widely accessible to general public. Analytical
tools available at http://www.svod.cz can be summarized as follows:

= Incidence and mortality: time trends of incidence, mortality and mortality/incidence
ratio. Available parameters are absolute numbers of incident cases, crude rate
(number of cases per 100,000 persons in population) and age standardized ratio
(ASR - European or World age standard)

= Time trends: changes of incidence and mortality in time. Available parameters are
growth indices related to selected year and between-years changes. Both parameters
could be viewed as absolute numbers or as relative percents.

= Regional overview: comparison of incidence and mortality in regions of the Czech
Republic. Available parameters are crude rate and age standardized ratio (ASR -
European or World standard).
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= Age-adjusted analyses: age structure of population of patients with selected
diagnosis.

= Clinical stages: time trends in proportion of patients diagnosed in a specific clinical
stage. Available parameters are absolute numbers, percents and crude rate of
patients in specific clinical stage(s).

= International data: comparison of incidence and mortality in the Czech Republic
with other countries. All these analyses are based on data obtained from IARC
database GLOBOCAN 2008.

= Comparative standards: time trend of incidence or mortality in selected region in
comparison with situation in the Czech Republic.

= Typology of patients: comprehensive overview of group of patient with specified
diagnosis.

Each output can be modified by selection of specific settings of the analysis (units, viewed
parameters, type of graph etc.) or by selection of a specific group of patients according to
sex, age group, region, time period, clinical stage, TNM classification and other parameters
related to the status of the patient. Examples of automated analytic tools and outputs can be
seen on figure 1.
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Figure 1. Selection of specific output in four steps: 1. selection of specific analytic tool; 2.
selection of diagnosis of interest; 3. analysis setting and selection of target group of patients;
4. graphic and tabular outputs and reports.
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2.2. Sources of international cancer epidemiology data

There are many internet sites, which provide information on cancer epidemiology on
regional or national level of specific countries and regions. Nevertheless, most of the users
mainly need a comprehensive information source comparing cancer data from different
countries and regions at one site. Such types of sources are available and are grouped on the
site of International Agency for Research on Cancer (IARC) called “CANCERMondial”
(http://www-dep.iarc.fr). CANCERMondial provides access to specific individual
international information sources of cancer incidence, mortality, prevalence and survival of
specific cancers. These sources are specific in the type of information provided and the most
important of them will be described in following chapters.

2.2.1. Cancer Incidence in Five Continents

The Cancer Incidence in Five Continents (CI5) series of monographs, published every five
years, has become the reference source of data on the international incidence of cancer. The
on-line CI5 databases provide access to detailed information on the incidence of cancer
recorded by cancer registries (regional or national) worldwide in two formats:

1. 15 I-IX which presents the data published in the nine volumes of CI5

2. ClI5plus which contains annual incidence for selected cancer registries published in
CI5 for the longest possible period

The first format (IS I-IX) provides tabular outputs of data, which were published in
individual volumes of printed CI5. The second format (CISplus) is more sophisticated and
provides tabular outputs by populations, cancers or years and graphic outputs in the form of
age-specific curves, time trends, time trends by age and trends by birth cohort. Moreover, the
data sources, from which all outputs of CI5 are calculated, are available for download.

2.2.2. WHO Cancer Mortality Database

This database, created and maintained by the Section of Cancer Information at IARC,
contains selected cancer mortality statistics by country, extracted from the World Health
Organisation (WHO) database. The original data have been converted and/or recoded to a
common system before presentation. However, due to changes in the ICD overtime, limited
number of cancer sites is available and some parts are incomplete, particularly from earlier
time periods.

Outputs are available in tabular form (by cancers, populations or years) or in graphic form:
line charts or age-specific curves, cumulative risk by age, time trends, time trends by age and
time trends by birth cohort; bar chart comparing different populations; pie chart of cancer
mortality proportions in selected population; population pyramid — age and sex structure of
selected population. Analytic tools also provide short and long term predictions of cancer
mortality and identification of single break points in mortality trends (so called significant
change in trends).

2.2.3. GLOBOCAN 2008

GLOBOCAN 2008 represents more comprehensive information source, which is based on
raw data from cancer and mortality databases. GLOBOCAN provides access to the most
recent estimates of the incidence, mortality, prevalence and disability-adjusted life years
(DALYs) for major type of cancers at national level for 184 countries of the world. The
recent GLOBOCAN estimates are presented for 2008, separately for each sex and, for
incidence and mortality data, for ten age groups. One-, three- and five-year prevalence data
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are available for the adult population only (age 15 and more). These estimates are based on
the most recent data available at IARC and on information publicly available on the Internet,
but more recent figures may be available directly from local sources. Due to continuous
improving in quality and extent of data sources used for GLOBOCAN calculations, the
outputs are relatively frequently updated a corrected.

The GLOBOCAN outputs are available in a form of complete factsheets, which describe the
overview of the selected type of cancer or cancer epidemiology in the selected country, or as
graphs, maps and tables focused on specific topic (e.g. incidence of specific cancer in men in
different countries). Following outputs for incidence/mortality are available:

e Tables: age-specific rates or numbers; standardised rates by populations or cancers

e Graphs: age-specific incidence/mortality curves; multi-bar chart by populations or
by cancers; dual multi-bar chart by cancers /populations, by cancers/sexes or by
populations/sexes; cancer maps; pie chart by populations or by cancers; population
pyramid by age/sex

e Advanced option: predictions of incidence (nowadays for 2008 and 2010) in graphs
and tables

Prevalence estimates (1-, 3- and 5-year) and disability-adjusted life years are available as
tables: proportions by populations or by cancers and graphs: dual multi-bar chart (showing
incidence and prevalence) by cancers /populations, by cancers/sexes or by populations/sexes;
cancer maps; pie chart by populations or by cancers.

2.2.4. European Cancer Observatory

European Cancer Observatory (ECO) is a project developed at the International Agency for
Research on Cancer (IARC) in partnership with the European Network of Cancer Registries
(ENCR) in the framework of the EUROCOURSE project supported by the European
Commission. The ECO platform provides a comprehensive system of information on cancer
burden in Europe across three web sites: EUCAN national estimates, EUREG registry data
and EUROCIM downloadable data.

EUCAN presents national estimates of cancer incidence, mortality and prevalence for 24
major cancer types in 40 European countries for 2012. The standard methodology used may
have produced results different from those developed by national bodies and for appropriate
information on population of interest the national information sources should also be used.
The cancer factsheets show the incidence, mortality and prevalence data for 24 different
cancer types in the European Union (27) and in each European country. The following
graphics and statistics are available: cancer-specific bar charts; cancer-specific summary
tables and cancer-specific interactive maps. The country factsheets show the incidence,
mortality and prevalence data for 24 different cancer types in the European Union (27) and
each of the 40 individual European countries. The following graphics and statistics are
available: country-specific bar charts; country-specific summary tables; country-specific pie
charts by country for incidence, mortality and prevalence.

EUREG permits the exploration of geographical patterns and temporal trends of incidence,
mortality and survival observed in European population-based cancer registries for 35 major
cancer entities in about 100 registration areas. It is relatively comprehensive analytic tool and
will be here not described in detail.

EUROCIM allows the user to define, extract and request data sets provided by the
participating cancer registries.
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3. Conclusion

Information sources, which provide data on cancer epidemiology, are nowadays widely
accessible in user friendly form with many types of graphical or tabular outputs on national
and international level. This is enabled by fast progress of information technologies for data
processing, analysis and presentation and by increasing cooperation in the field of cancer
epidemiology. Nevertheless, a crucial point of any cancer epidemiological assessment still
persists: quality, completeness and representativeness of cancer data. Collection of such data
is a complex process requiring close cooperation of wide range of specialists from health
care to data management and IT and support of this field is as important as development of
cancer epidemiology information tools.
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Abstract

Survival analysis is concerned with analyzing time-to-event data where the event of
interest usually represents some type of “failure”. In clinical medicine, the event of
interest may be e.g. death of a patient from well specified causes, autoimmune rejection
of the graft by the transplant recipient or other type of graft failure in transplant studies.
In certain situations, however, the true survival outcomes may not be observable,
because we have observed a so called “censoring event” which prevented the event of
interest from occurring. Such censoring event may represent, for instance, loss of a
particular subject from follow-up, occurrence of administrative censoring, which
typically takes place in clinical trials, or we may indeed observe other type of “failure”,
e.g. death from fatal injuries rather than from cardiovascular causes which were of
primary interest in a particular clinical trial. In this article we will stress the importance
of a key assumption relating censoring process to survival outcomes and review
principle univariate survival analysis methods for uncorrelated data. We will review
popular models for analyzing univariate survival data, many of which enable us
quantifying effect the prognostic variables independently exert on survival outcomes.
Model examples will cover the classes of non-parametric, parametric and semi-
parametric methods. We will also review underlying assumptions of individual models
and stress the importance of using appropriate models in analyzing univariate time-to-
event data.

Key words

Survival analysis, time-to-event data, censoring process, hazard function, survival time

1. Introduction

In survival analysis we are typically concerned with time to the occurrence of certain type of
serious, potentially life-threatening or even terminal medical event, such as patient’s organ
failure or death, and how this time may be altered using some sort of clinical intervention.
We may also study time-to-relapse or to recurrence of the disease where the disease is not
terminal. However, in this paper we will limit our focus to non-recurrent uncorrelated
univariate events only. Typical examples of the events of interest are, for instance, the
occurrence of acute myocardial infarction, stroke, kidney or liver failure, HIV infection,
development of AIDS, and, indeed, also death from such causes. The interventions may
include various dietary and exercise regimen, but are usually designed to compare the
performance of some standard and experimental pharmacological treatment. In clinical
settings we study the effect of experimental drugs on the survival of seriously or terminally
ill patients, such as in cancer or HIV/AIDS trials. A similar discipline developed in industrial
or technical context, where it is called “reliability”. One of the first topics of interest in
reliability studies was evaluating time to light bulb failure where the exponential distribution
was assumed with its memoryless property. In clinical studies time-to-death from certain
well-specified cause or disease was historically of primary interest, hence the term “survival
analysis” developed for the discipline. Survival analysis is often used in prospective clinical
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studies where the excess or rather reduction of the risk under experimental treatment needs to
be evaluated relative to some baseline, typically associated with using the placebo or
standard treatment. In this paper we will introduce concept of censored data which typically
arise in survival studies and will focus on the case of right censoring. We will introduce the
notion of hazard and cumulative hazard function, respectively, and show how they are
related to estimating the survival function. We will also introduce three kinds of classes for
modeling univariate uncorrelated right-censored data, namely the class of non-parametric,
parametric and semi-parametric models, respectively. We will also touch upon important
assumptions which underline justifiable employment of individual models for analyzing
survival data and show some examples of analyzing the data using the R system for
statistical analysis and graphics (R Development Core Team, 2013). Some useful
monographs and resources dealing with the subject of analyzing right-censored univariate
uncorrelated survival data which will not be specifically referred to later in the text include
Therneau et al. (2000, 2013), Rosner (1987), Armitage et al. (2008) and Zvarova et al.
(2003).

2. Censoring, truncation and related assumptions

In analyzing the survival data we often deal with the fact that we could not observe the value
of time to occurrence of the event of interest, e.g. time to death from cardiovascular causes.
This frequently occurs in the context of clinical trials which are often designed with a pre-
determined end-of-study time point. When the trial is closed we may only conclude that in
certain individuals the fatal cardiovascular event did not take place before the study ended,
although in fact it could occur soon after that. In this case we speak of so-called
“administrative censoring”. Censoring can also take place due to patient’s withdrawal or
because some other event occurred earlier during the study, thus preventing the event of
interest from occurring. When, for instance, the patient included in the study died from other
than cardiovascular causes before the study closed, than his or her time of death was
recorded as a censored observation. It is very important to realize that in survival analysis we
are effectively exploiting the information brought about not only by the observed event
times, but also the censoring times. In other words, even though until certain time the event
of interest was not observed in some individuals and nothing more specific can be said about
their future event’s occurrence, we are still able to use the former information effectively in
survival analysis. Censoring observations thus contribute information which may be
effectively utilized in evaluating the survival experience in the respective groups or strata.
However, this is only true when a key assumption of the survival analysis is upheld, namely
that the censoring process must be independent of the process generating the events under
scrutiny. We then speak about “random censoring” or “non-informative censoring”. In other
words, the reason why for any trial participant the observation time will or will not be
censored, may in no way be related to the likelihood of observing a failure for that subject,
or, for that matter, to the value of prognostic factors which may influence the survival times
in the target population. Speaking of assumptions, one must also make sure that for every
trial participant the event may take place only once (i.e. models for recurrent data are not
subject of this presentation), entry time into the study must be well defined for each subject
and the time scale has to be identical for all subjects enrolled into the trial.
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Figure 1. Right-censored survival data description

Let us formally denote time to occurrence of the event of interest X and time to observing a
censoring event C. We distinguish between several types of censoring.

Right censoring: Under this scenario we are observing the time T = min(X, C).
Right censoring occurs when X > C, otherwise we indeed observe the event of
interest occurring at time X. Again, when right censoring takes place, we either did
not observe event’s occurrence before the study ended, or the patient has withdrawn
from the study (“loss from follow-up”), or some other type of event took place thus
preventing the event of interest from being observable. Graphical description of
right-censored survival data scenario is shown in Figure 1. The right panel reveals
that under standard conditions, which are strictly adhered to in clinical trials, the
observations’ entry into the study may be moved to origin without compromising
important assumptions. This is done in order to maximize the number of subjects
being at risk at different follow-up times, which further enhances the efficiency of
the survival methodology. Note that if we could not move the subjects’ entry to
origin then, for instance, at time of 2 days into the trial only 2 of 8 available patients
would be comprising the risk set.

Left censoring: Left censoring occurs when the event of interest occurred before
some well defined point in time, but we are not able to determine exactly when. Let
us assume, for instance, that a subject was asked the following question: When did
you first time smoke marihuana? If his or her answer was: I smoked pot when I
attended secondary school (i.e. before 15 years of age), but cannot tell you exactly
when was it the first time it happened, then that is a case of left censoring.

Interval censoring: Under interval censoring scenario we are only able to say that
the event of interest occurred at some time within a definite time interval, but are
again unable to determine exactly when that happened. This type of censoring
typically occurs under periodic patients’ follow-up.
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e Truncation: A different feature in survival studies, sometimes confused with
censoring, is called “truncation”. For truncated data, only individuals who
experience some event are observed by the investigator. The event may be some
condition which must occur prior to the event of interest, such as exposure to a
disease, entry into retirement center, recurrence of leukemia prior to death, etc. For
more details, see e.g. Klein et al, 2003.

3. Hazard rate and survival function

3.1. Hazard rate
Hazard function (or, hazard rate) A(.) is defined as follows:

B ae Pz <X <z+ Az|X > z)
() M) =, Az

s

where P(.) denotes conditional probability of observing the event of interest within the time
interval [X, X + A(X)), conditional on the fact that the event did not occur before time X and
may only occur at or after that time. Taking the limit while A(X) is approaching zero from the
right gives frequency of this conditional probability at infinitesimal time increment after X,
thus representing conditional failure rate of the process generating the events of interest.
From equation (1) we conclude that product A(X)A(X) approximates conditional probability
that the event of interest will take place at infinitesimal time increment after X. This is why in
counting process terminology A(x) is referred to as the events’ generating process “intensity”
(see e.g. Fleming et al, 1991, Andersen et al, 1982).

3.2. Survival and cumulative hazard function

Survival function S(.) gives the probability of not observing the failure in any individual
guided by the same events-generating process before or at time X:

Je's
(2) S(z) = P(X > x) =/ fw)du =1— F(x),
where P(.) stands for probability measure and f(.) and F(.) are in turn the probability density
function (pdf) and cumulative density function (cdf) associated with the events-generating
process. We observe that the survival function is a complement of the cdf.

Let us now consider the relationship between the hazard rate and survival function. We will
show an intuitive way of uncovering the relationship, which may be more properly shown
using the Leibnitz formulae.

: Pz< X <z+ Az|X =) . Plz< X <z+ Ax)
AMzx) = lim = lim -
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X X
hence S(x) = exp(—J' A(u)du) = exp(— A(X)), where A(X) = J' A(u)du is called “cumulative
0 0

hazard rate” (evaluated at time X), or “cumulative intensity” of the process which generated
the events, in counting process terminology. It is straightforward that we can formulate the
relationship in a reverse manner: A(X) = —ln[S(X)] .

47



4. Models for right-censored univariate survival data

4.1. Non-parametric survival models
4.1.1. Kaplan-Meier (Product-Limit) estimator

Standard survival function estimator, called the “Product-Limit estimator” (PL), is attributed
to Kaplan and Meier (Kaplan et al, 1958). The PL estimator is given as follows:

5 d;
S(x) = 1——1,
@ =11 ( R, ) |
LH R
where d; events were observed at time X; and R; is the number of individuals at risk at time X;.
The variance of the PL estimator can be estimated using Greenwood’s formula:
e ’ d,‘
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Using the relationship shown above the product-limit estimator can also be used to estimate
the cumulative hazard function: A(X) = —ln[§ (X)].

4.1.2. Nelson-Aalen estimator

An alternative estimator of the cumulative hazard function was first proposed by Nelson in a
reliability context and lately rediscovered by Aalen who derived the estimator within the
counting process framework (Nelson, 1972; Aalen, 1978). It is therefore called ‘“Nelson-

Aalen estimator”:
. d;
Alz) = —.
&)= > =
(TR
Variance of the Nelson-Aalen estimator derived by Aalen is given by:
T (f,‘
V(A(z)) = Z =
gzt

Based on the Nelson-Aalen estimator of the cumulative hazard function, an alternative
estimator of the survival function becomes S(x) = exp(— K(X)).

4.1.3. Log rank test

We are often interested in comparing the survival experience in two or more populations of
patients, or to test the null hypothesis that the hazard rate in certain population corresponds
to a particular rate function. We will describe in more detail “one- sample log-rank test”,
which is designed to test the null hypothesis Hy that the hazard rate in the population of
interest equals Ay. This test may then be generalized to compare survival experience in
several populations. Using different weight functions we may also obtain different variants
of the test.

Now, we wish to test the null hypothesis that population hazard rate equals a particular
function, namely Hy: A(X) = 2o(X) for all X < 7, against the alternative H;: A(X) # A(X) for some
X < 7. We will employ the Nelson-Aalen estimator of the cumulative hazard function

K(x) = in SX%}‘(” , where d; is the number of events observed at event time X; and R(X;) is

the number of patients at risk just prior to time X;. The quantity di/R(X;)) gives a crude
estimate of the hazard rate at an event time X;. We shall compare the sum of weighted
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differences between the observed and expected hazard rates to test the null hypothesis. Let
W(t) be a weight function which is zero-valued whenever R(X) is zero. The test statistic for
the log-rank test is then given by:

d;
R(z;)

D
Z(r)=0(r) — E(r) = Y _ W(x)
i=1

—/ W (u)Ao(u)du.
Jo

When the null hypothesis is true, the sample variance of this test statistic is given by

A= [ wis)2dw)
V(Z(T)] = [u W=(s) R(w) du
For large samples, the statistic Z (z) /V (Z (7)) has a central chi-squared distribution when H,
is true. The most popular choice of the weight function W(x) = R(X) yields a one-sample log-
rank test. Other choices lead to Gehan-Wilcoxon, Tarone-Ware, Peto-Peto, modified Peto-
Peto, and several variants of the Fleming-Harrington test (see Klein et al., 2003 for more
details).

We will now show how R software for statistical computation and graphics (R Development
Core Team, 2013) may be used in providing the above mentioned analyses. We will use data
on 137 Litoméfice male subjects with the history of acute myocardial infarction between
1991 and 1999. Sixty-eight of them were randomly selected to be intervened on a wide range
of cardiovascular risk factors associated with metabolic syndrome, the rest composed a
control group. We will compare the survival experience in the two groups of patients using
the Kaplan-Meier method and the log-rank test. The event of interest was mortality from
acute myocardial infarction (AMI) or ischemic heart disease (IHD), history of these events is
recorded in the variable “fail”.

> summary(survfit(Surv(time,fail) ~ intervention, data=litomerice.muzi.dat, type="kaplan-meier"))
Call: survfit(formula = Surv(time, fail) ~ intervention, data = litomerice.muzi.dat, type = "kaplan-meier")

intervention=0
time n.risk n.event survival std.err lower 95) CI upper 95} CI
326 69 1 0.986 0.0144 0.958 1.000
To7 66 1 0.971 0.0208 0.931 1.000
823 65 1 0.956 0.0250 0.908 1.000
852 63 1 0.940 0.0289 0.886 0.998
894 62 1 0.926 0.0321 0.864 0.991
915 61 1 0.910 0.0350 0.844 0.981
936 60 1 0.8956 0.0376 0.824 0.972
964 59 1 0.880 0.0399 0.805 0.962
985 58 1 0.8656 0.0420 0.786 0.951
1193 56 1 0.849 0.0440 0,767 0.940
1370 56 1 0.834 0.0458 0.745 0.929
1697 53 1 0.818 0.0476 0.730 0.917
2115 52 1 0.802 0.0492 0.711 0.908
2809 50 1 0.786 0.0508 0.693 0.892
2842 48 1 0.770 0.0523 0.674 0.879

intervention=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI

683 68 1 0.985 0.0146 0.857 1.000
1223 66 1 0.970 0.0206 0.931 1.000
1280 64 1 0.955 0.0253 0.807 1.000
1416 63 1 0.940 0.0291 0.885 0.998
2031 62 1 0.925 0.0323 0.864 0.990
2177 61 1 0.910 0.0362 0.843 0.981
2328 60 1 0.895 0.0377 0.824 0.972

We observe that the survival experience appeared to be a little better in the intervention
group. Let us now proceed to formally testing the survival differences in the two groups
using the log-rank test. We will also manually verify the value and significance of the test
statistic.
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> (a <- survdiff(Surv(time,fail) intervention,rho=0,data=litomerice.muzi.dat));
Call: survdiff(formula = Surv(time, fail) ~ intervention, data = litomerice.muzi.dat, rho = 0)

N Observed Expected (0-E)-2/E (0-E)~2/V
intervention=0 69 15 11.4 1.13 2.58
intervention=1 68 T 10.6 1.22 2.58

Chisq= 2.6 on 1 degrees of freedom, p= 0.108

> (a$obs-afexp)~2/diag(a$var);
[1] 2.58445 2.58445

> 1-pchisq{a$chisq,1);
[11 0.1079179

As may be seen above, a formal log-rank test failed in rejecting the null hypothesis of
identical survival experiences (i.e. identical hazard rates) in the two populations of
Litoméfice males.

4.2. Parametric survival models
4.2.1. Choices for parametric modeling

Parametric models represent an appealing choice for drawing inference from univariate right-
censored survival data. These models are very popular among the researchers because they
offer insight into the way the hazard rate changes in time depending on a choice of various
model parameters. Here the experience and knowledge of the clinicians together with the
information gathered from the actual data may help in selecting suitable model which will
best explain the observed data.

In general, a range of continuous probabilistic distributions may be considered for modeling
the shape of the hazard rate over time. Some popular distribution choices include the
exponential, Weibull, gamma, log-normal, log-logistic, normal, exponential power,
Gompertz, inverse Gaussian, Pareto and generalised gamma distribution. For more details
regarding the corresponding hazard rate, survival function, probability density function and
mean of the distribution the reader is referred to Table 2.2 of Klein et al. (2003), p. 37.

4.2.2. Weibull parametric survival model

Let us now take a closer look at one popular choice of parametric distribution for modeling
right-censored univariate survival data, the Weibull distribution. Weibull distribution
provides wide flexibility in modeling various trends in the hazard rate, namely modeling the
course of the hazard rate as increasing, decreasing or constant.

For a two-parameter (o, #) Weibull distribution formulas for the hazard rate, cumulative
hazard and survival function, respectively, are the following: A(x) = naxafl, A(X) = nx%, S(X)
= exp(-nx?).

The log-linear model for Y = In(X) may be obtained using the following substitutions: Y =
In(X) = i + oW, where W denotes random variable with extreme values distribution, and, # =
exp(—u/o), where ¢ = 1/a. In order to include explanatory variable Z into the model, we
write: Y =In(X)=u +y'Z + oW.

The Weibull model for the conditional hazard rate A(x|Z) has the following structure:
(3) Mz|Z) = (naz®~ ') exp(B'Z),
where o = 1/, 1 =exp(—u/o), f=-y/o.

The first component (yax”") in equation (3) is called “Weibull baseline hazard” ,(x). Note
that it is not influenced by the explanatory variables Z and describes hazard level associated
with the incidence of the event of interest (e.g. a particular disease incidence or death from
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specified causes) in general population. This is why this formulation of the Weibull model is
called Weibull proportional hazards model, because the ratio of the hazard rates at time x for
two different subjects having distinct covariate values Z; and Z, only depends on the
respective covariate values and regression coefficients £ while the baseline hazard cancels
out. This phenomenon is described in detail below:

(4) Az|Zy) _ Ao(z) exp(3'Zy)
Mz|Zz)  Ao(x)exp(5'Zs)

Let us now consider fitting the Weibull parametric model to our Litoméfice data in R. We
are still interested in cardiovascular mortality from AMI or IHD captured in the variable
“fail”. For this purpose will use the R function survreg(.), Please, note that it is important to
let the model estimate the actual scale parameter value from the data because, unless we
wish to specify some specific distributions arising from selecting some particular values.
Fixing the scale at 1 or 0.5 will under Weibull distribution lead to fitting the exponential and
Rayleigh model, respectively.

=exp{B'(Z1 — Z,)}.

> summary (survreg(Surv{time,fail) "intervention+agel,data~litomerice.muzi.dat, dist="weibull",kscale=0))

Call: survreg(formula = Surv(time, fail) ~ intervention + agel, data = litomerice.muzi.dat, dist = "weibull", scale = 0]
Value Std. Error z P

(Intercept) 11.5488 1.5766 7.33 2.30e-13

intervention 0.5878 0.3967 1.51 1.32e-01

agel -0.0495 0.0291 -1.70 B.86e-02

Log(scale) -0.2369 0.2002 -1.18 2.37e-01

Scale= 0.789

Weibull distribution

Loglik(model)= -230.8 Loglik(intercept only)= -233.4

Chisq= 5.21 on 2 degrees of freedom, p= 0.074

Number of Newton-Raphson Iterations: 8

n= 137

Let us recall the relationship between the Weibull parameters a and #, parameters specified

for the linear model y, y and o, and the regression coefficients £:
a=1/o, n=-exp(—p/o), B =—7/0o.

Because the scale parameter ¢ was estimated at 0.789, we may obtain the values of
regression coefficients f as follows:

Yinterventi 0.5978
.J'j'i'n.f.c-r'mcm‘.ion —_— ”nt..?;_{ peson - - 00789 = —07577~
,- __= Yagel - —0.0495 = .
Pagel = == = = — o0~ = 0.0627

Now it is straightforward to calculate the hazard ratio (HR), or equivalently, relative risk
(RR), associated with both prognostic variables, intervention and age at entry into the trial

HRFHH'F-:'(:HHUH = exp(.ﬁinh'r'r'r:u!Fuu} = Oxp(_0'7577) = 0-17
HRuge = exp(Bager) = exp(0.0627) = 1.06.
We observe that there is some indication that after adjusting for the effect of age at entry the
intervention of cardiovascular risk factors in male subjects with the history of AMI worked
as expected, although the result failed to reach statistical significance at a level 0.05. The

hazard reduction in intervened patients is estimated at 53%, each additional year of age
appears to increase the hazard by approximately 6%.
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4.3. Semi-parametric survival models
4.3.1. Cox proportional hazards model

In one of the most influential seminal papers of all times, D. R. Cox introduced
multiplicative model for right-censored univariate survival data (5) involving the baseline
hazard component 4y(X) and suggested estimating the regression parameters S using partial
likelihood approach (Cox, 1972). This model has a similar form to what we have seen before
with Weibull proportional hazards model, only that in this case the baseline hazard function
Jo(X) is left completely unspecified, even without the need to be estimated in order to make
inference about regression parameters, while in the former case Weibull or some other
parametric distribution had to be assumed in modeling the baseline hazard function.

(5) Mz|Z) = Xo(z) - exp(B'Z)

Let R(X;), the “risk set”, denote the number of individuals being at risk of experiencing the
event just before time X;. The probability of any individual failing at time X;, conditionally on
being in the risk set just before time X;, is given by:
exp(8'Z;)
Z,;‘e R(x:) €XP(B'Z;)
Estimation of regression parameters S proceeds by maximizing partial likelihood (6), a
concept introduced by D. R. Cox in the above mentioned paper. Partial likelihood allowing
for tied observations (due to Breslow) has the following form:
D i
- : exp(8's;
(6) PL) =] L B
=1 [Z,;’EH(.;:;)"-X])Ui!zj)]

where i indexes the failure times, J; gives the number of individuals that failed at time X;

P(){ = _-1_'1-|R(if-'r')) =

and s; = Zjeb‘- Z . Note that only the failure times constitute the terms in the numerator of
partial likelihood. The assumption of proportional hazards embedded in the Cox model has
exactly the same interpretation as that given in equation (4). Specifically, for any two
individuals the hazard ratio at any given time solely depends on the value of their covariates
through the regression coefficients, while for the purpose of estimating the model parameters
the baseline hazard function does not even need to be specified. However, as is the case with
every model assumption, before using the Cox model the proportional hazards assumption
needs to be verified for the actual data set at hand.

Lets us now apply the Cox PH model to Litoméfice data and verify the PH assumption for
the data. Here we are concerned with the overall survival of the patients for which we will
use the variable “scode”. The results obtained from fitting the Cox PH model in R are shown
below. The first formula gives the summary of regression parameter estimates while the
second part performs a formal test of the PH assumption.
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> summary{cox.fit2 <- coxph(Surv(time,fail) intervention+agel,data=litomerice.muzi.dat)};
Call: coxph(formula = Surv(time, fail) ~ intervention + agel, data = litomerice.muzi.dat)

n= 137, number of events= 22

coef explcoef) selcoef) z Pri>lzl)
intervention -0.89698 0.40780 0.47488 -1.B89 0.0589 .
agel 0.06221 1.06418 0.03531 1.762 0.0781 .
Signif. codes: 0 “=xx' 0,001 ‘#** (.01 “** 0.05 “.? 0.1 * * 1

exp(coef) exp(-coef) lower .95 upper .95
intervention 0.4078 2.4522 0.1608 1.034
agael 1.0642 0.9397 0.9930 1.140

Concordance= 0.663 (se = 0.063 )

Rsquare= 0.043 (max possible= 0.781 )

Likelihood ratio test= 5.97 on 2 df,
2
2

p=0.05056
Wald test = 5.78 on 2 df, p=0.05555
Score (logrank) test = 5.93 on 2 df, p=0.05165

> cox.zph(cox.fit2);

rho chisq P
intervention 0.374 2.996 0.0835
agel -0.145 0.495 0.4818
GLOBAL NA 3.191 0.2028

Age-adjusted intervention effect estimate obtained from fitting the Cox PH model appears to
be a little higher than that rendered by the Weibull model. Hazard reduction observed in
intervention group is approaching the 60% level. However, the result failed reaching
statistical significance (p = 0.0589). The R-function cox.zph provides a formal test of
proportionality assumption, which appears to be fine for the age at entry while there is a
slight suggestion that the intervention effect may not be constant over time (p = 0.0835).
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Figure 2. Predicted survival for males aged 55 years based on Cox PH model with 95%
confidence limits based on log-transforming the survival function

Let us now proceed to obtaining predicted survival curves (with 95% confidence limits
based on the log-transformation of the survival function) for males aged 55 years in the two
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follow-up groups based on the fitted Cox PH model. The results are summarized in Figure 2.
We observe that the 95% confidence bands corresponding to two groups of males overlap,
reflecting the non-significance of the fit obtained earlier from the Cox PH model. Even
though not supported with statistical significance of the finding, survival experience appears
to be a little more favorable among intervened males aged 55 years than those from the
control group.

4.3.2. Gray’s time-varying coefficients model

In previous paragraph we observed some indication from our data that the hazard ratio in the
two respective groups of males might vary over time. The R-function cox.zph, providing a
formal test of the PH assumption, rendered the p-value of 0.0835, indicating mildly that the
assumption of the hazards proportionality in time may be in question. Let us therefore adopt
a different modeling approach proposed by R. J. Gray as an alternative to the Cox PH model
(Gray, 1992). Under the penalized modeling framework Gray introduced time-varying
regression coefficients (TVC) model allowing for flexible modeling of the hazard ratios over
time. The model uses piecewise-constant or cubic B-splines to estimate the values of
regression coefficients varying in time. Gray’s model may be formally described as follows:

(7) Mz|Z) = Mo(x) - exp(B(x)' Z)

The R function coxspline for fitting the Gray’s model is available from Dr. Gray’s website at
http://biowww.dfci.harvard.edu/~gray/ and may be compiled for all major computational
platforms (Unix, Linux, Windows and Mac OS X) in R. It also includes estimator of the
survival function for the Gray’s piecewise-constant coefficients model proposed and
implemented by Valenta (Valenta et al, 2002). Below you may find summary of the results
from fitting Gray’s TVC model to our data, including a formal test of the PH assumption
which differs slightly from that implemented in the cox.zph function in R. The column
labeled “overall” in the R output below provides results from testing the overall significance
of the covariate effects in the Gray’s model while the “nonprop” column summarizes results
from testing the PH assumption. Note that the latter test found the PH assumption violated
for our data (p = 0.0313), thus rendering the Cox PH model unsuitable for summarizing the
survival experience in the two groups of our data. The intervention appeared to have
significantly reduced cardiovascular mortality overall (p = 0.0317) while the hazard
reduction, appearing impressively higher at early stages of the trial, steadily diminished over
time.

> gm <- cox.spline("t",data$time,fail,spline.cov=x,df=rep(2,dim(x)[2]),nknot=3);
> gm$test;
$intervention
overall nonprop
stat 6.0367056 3.17262748
pv 0.0316777 0.03134978
df 1.9995897 1.00021603

$agel

overall nonprop
stat 3.0984309 0.09203414
PV 0.1835401 0.95842560
df 2.0002145 1.0003B069

> exp(gmScoef)

intervention intervention intervention intervention agel agel agel agel
0.2088727 0.2368947 0.6916698 0.8969110 1.0711732 1.0692540 1.0612674 1.0605251
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Figure 3. Predicted survival for males aged 55 years based on Gray’s TVC model with 95%
confidence limits based on log-transforming the survival function

Here we observe that hazard reduction in the intervention group is diminishing over time,
initially being close to 80% and finally being reduced to just over 10%. Finally, let us again
take a closer look at our findings by estimating the survival functions for males 55 years old.
Our findings are summarized in Figure 3. First, we may note that the overall survival
experience is indeed much more favorable in the intervention group of males. There is a little
overlap of 95% confidence bands after 2 thousand days into the trial, suggesting increasing
variability of the regression coefficients as the sample size is reduced later in the trial. Some
aspects of choosing an appropriate model for the survival data were also discussed in Valenta
et al. (2006).

5. Conclusions

We have reviewed common characteristics and features of uncorrelated univariate survival
data, including censoring and truncation. We have provided a deeper insight into the nature
of right-censored data and have emphasized important assumption of censoring process
being independent from that generating the outcome. We have reviewed classes of non-
parametric, parametric and semi-parametric models and have taken a closer look at the
principal models representing each class. We have stressed the assumptions of using the
statistical models under review and the need for verifying the assumptions for each particular
data set to be analyzed.
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Abstract

The aim of this contribution is to present basic mathematical knowledge on how the
hazard rate of the first hitting time is related to the underlaying stochastic process.
We would not give complete mathematical treatment, but rather a practical view
suitable for modelling and performing simulations.
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1. Random process, first hitting time and hazard rate

This contribution is aimed to be used as an introductory text for better understanding
Chapter 10 of book (Aalen et al., 2010). It uses similar examples but in more details to
show to the reader that, despite the more difficult mathematical background, the appli-
cation and interpretation of such models is tractable. We hope it could be useful to the
readers who are interested in the application of stochastic processes for modelling the
hazard rate functions understood as the risk to attain some specific state of the process.
It is assumed that the reader already has some knowledge of the basic mathematical
notation used in the survival analysis and of its interpretation.

Random process (or stochastic process) X (#) can be understood as a sequence of ran-
dom variables indexed by instants of time, t. This means, that for each time ¢, X (t) isa
random variable with some probability distribution and statistical characteristics. If the
index set is continuous, usually given as interval [0, 00) or [0, T|] for some fixed T > 0,
we call it continuous-time process. If the index set consists only of separated instants
of time (finite or countable), the process X (t) is called discrete-time process. Another
classification of random processes is by the set of possible values, so called state space.
If the state space is a finite or countable set (for example, {1,...,5} or {1,2,...}) the
process X (t) is called a chain. If the state space is continuos we say X () is a random
process with continuous states.

A special class of random processes consists of so called Markov processes (or Markov
chains). Markov processes are memoryless random processes. It means, that for fixed
instant of time £(, the future evolution of such a process X(t) depends on the present
value X(#(), not on the history. This mathematical fact is mathematically written in
terms of the probability as

P[X(to + h)[X(t),0 < t < to] = P[X(to + h)|X(to)]

and says that the probability distribution of the random process X (ty + &) at every
future time ty + h, conditioned by the knowledge of the past values of the process,
is the same as the distribution conditioned only by the knowledge of the present value
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X (to). Markov processes (and Markov chains) are, in general, the most studied random
processes with relatively simple practical application on data or for simulations.

We can think the particular states as different stages of a disease or different therapies.
Absorbing state is a state with no further possibility to change the state. If there is no
possibility of relapse, the heal of the disease will be represented by an absorbing state.
The other states correspond to the survivors. We focus on the hazard rate function,
which is an intensity of the survivors at risk of reaching the absorbing state. We derive
the dependency of the the hazard rate as on time we examine the so called first hitting
time to reach the absorbing state. The first hitting time is a random variable, hence
having some probability distribution for which the hazard rate function can be calcu-
lated. It will be seen how the initial distribution of the population among the states of
the model influences the shape of the hazard rate function.

2. Hazard rate in model with multiple states

Now, we focus on a finite state Markov chain with a single absorbing state. We take
a bit simpler example than that shown in (Aalen et al., 2010) and we show how it is
possible to obtain different shapes of the hazard rate in this model.

B2 B2 B2
1 p1 B1 B1

Figure 1. Transition scheme of the model from the example. State 1 is absorbing.
Constants 31 and 3, are the transition intensities.

Consider the continuos time Markov chain with the state space 1, . ..,5. The transition
scheme of the specific chain is shown in Fig. 1. Each box represents a state of the
chain and the arrows indicate the possible transitions. The parameters 1, B, are the
transitions intensities for moving one state down or up, respectively. State 1 is the
absorbing state, states 2—4 are states of the survivors. The specific event of our interest
is to reach the absorbing state 1. With respect to this event, it could be seen, that the
population at risk is concentrated in state 2 only.

Properties of the Markov chain with continuous time can be described by the matrix of
transition intensities, which in our example has the following form,

0 0 0 0 0
B1 —(B1+pB2) B2 0 0
Q=10 B1 —(B1+B2) B2 0
0 0 P —(B1+B2) B2
0 0 0 B1 —B1

The element in row i and column j of Q gives the transition intensity from state i to
state j, for i # j. The elements on the diagonal of Q are calculated in such a way, that
the row sums are equal to zero. The zero values of all the row sums of matrix Q is the
typical property of the matrix of transition intensities.
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The meaning of the transition intensities is better seen when working with a discretized
version of the chain. Suppose that the process can evolve only in discrete time steps of
given (small) length At > 0. Let us calculate a new matrix

P = (I+Q)At,

where I stands for the identity matrix of appropriate dimension. If At is short enough,
all the elements of P have values between 0 and 1, and therefore P can be understood
as a matrix of transition probabilities. The value of the element of P in ith row and jth
column gives the probability, that an individual in state 7 at time instant { will move to
new state j during the (short) time interval (¢, t + At]. Typical property of the transition
probability matrix is that all its rows sum to one; such a matrix is called stochastic
matrix. Let us choose 1 = 1 and B2 = 1.5 in our model and let us calculate P for the
time interval At = 0.02. We obtain

1 0 0 0 0

0.02 095 0.03 0 0

P=| 0 002 09 003 0
0 0 002 09 0.03
0 0 0 002 098

We see, e.g., that the probability, that an individual in state 2 will move to state 1 during
the time interval of length At = 0.02 is equal to 2 %. Analogously, an individual in
state 5 will not change its state with probability 98 %. State 1 is absorbing, which is
indicated by the probability of 100 % on the diagonal of the matrix.

The advantage of P is that it gives a simple way to calculate the probability distri-
bution of the population among the states at every multiple of Af, hence at times
0, At,2At,3At,.... If At is chosen short enough, we obtain a pretty good approxi-
mation of the original continuous-time Markov chain. Let p(k At) stand for the proba-
bility distribution of the population at time instant k At. It is a vector consisting of the
probabilities that a randomly chosen individual at time k At will be in particular states
from 1 to 5. Of course, the probabilities in this vector always sum to one. Similarly, let
us denote the initial distribution (at time 0) as po. Then, we have the general formula

p(kAt) = poP*,  k=0,1,2,...,
where P* stands for the matrix power of order k, or, alternatively, the recurrent formula
pl(k+1)At] = p(kAt) P, k=1,2,....

Now, we can easily perform a simulation of such a process by repeating the calculation
according to the last equation for k = 1,2, . ... Then, obtained values of the probability
distribution of the population among the states can be plotted as functions of time.
Resulting distributions obtained from our model are depicted in Fig. 2 for two different
settings of the initial distribution of the population. We see that the proportion of the
population at state 1 grows in time. The proportions of the population in the other states
2-4 exhibit either decreasing behaviour or it increases at first, reaches a maximum
and then decreases as the time grows. The proportions od states 2—4 tend to zero
asymptotically, whereas the proportion of state 1 tends to one.
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Figure 2. Probability distribution, p(t), of the population in the particular states in
time, ¢: state 1 (thin solid increasing), state 2 (solid), state 3 (dashed), state 4 (dot-
ted) and state 5 (dash-dotted). On the left hand side for initial distribution py =
(0,1,0,0,0) (initially in state 2), on the right hand side for uniform initial distribu-
tion among the states 2-4, pg = (0,0.25,0.25,0.25,0.25).

Very interesting property of these models is so called quasi-stationary distribution of
the population in time. The work quasi-stationary indicates that it is not stationary in
general. Only the distribution of the part of the population which survives (hence did
not achieve the absorbing state) converges to some stable distribution. To obtain the
distribution of the survivors is very easy: we chose only those values of the vector
p(k At) which correspond to the survivor (nonabsorbing) states and we normalize it in
order to sum to one again. The resulting survivor distribution is denoted by s(k At). In
our example, the non-survivors are collected in state 1, hence our s(k At) is obtained
by taking only the last 4 values from s(k At) by normalizing the new vector (of length
4). The result is plotted in Fig. 3. We observe the typical behaviour of the distribution
of the survivors, it gets stabilized when the time grows. This is not in contradiction with
the proportions plotted in Fig. 2: the proportions of the survivors in the whole popula-
tion tend to zero, but their ratios are kept asymptotically constant. The limiting values
of s(t) can be calculated as the normalized elements of the left eigenvector (which
is the common eigenvector of the transposed matrix) corresponding to the dominant
eigenvalue (i.e. the least absolute eigenvalue) of the submatrix of Q of only the survivor
states. In our example, we take the matrix Q without the first row and first column and
calculate its eigenvalues: the least one in absolute value is 0.067 and the correspond-
ing left eigenvector is equal to (0.114,0.277,0.504,0.810). By normalization of this
vector we get the limiting survivor distribution s(c0) = (0.067,0.163,0.295,0.475),
which are plotted in Fig. 3.
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Figure 3. Probability distribution, s(t), of the survivors in time, ¢: state 2 (solid), state
3 (dashed), state 4 (dotted) and state 5 (dash-dotted). The layout corresponds to the
conditions in Fig. 2.

We are interested in the event, when the individuals come to the absorbing state (state
1 in our example). This links the hazard to the distribution of risk for the survivors. If
the event of our interest is to pass the individuals to the absorbing state 1, the hazard
rate, A(t), at time f is given by summing the probability that an surviving individual
is in state j at time ¢ multiplied by the intensity of transition from state j to state 1 for
over all the survivor states. This rather complicated formula has simple mathematical
notation in form of a scalar product

Ak At) = s(kAt)'r,

where r is the first column of the transitions intensities matrix Q without the first
element; such a vector r gives exactly the intensities of transition from all the survivor
states to the non-survivor (absorbing) state 1. In our example, according to its schema
and matrices Q and P, we see that this can happen only by individuals in state 2 passing
to state 1. The resulting hazard rates A as functions of time are shown in Fig. 4. Note
especially the different shapes in accordance with different initial distributions of the
population. But, we see that the hazard rate converges to the unique value regardless
on the initial distribution of the population. This limiting value can be again easily
computed as the absolute value of the dominant eigenvalue of the submatrix of Q
corresponding to the survivor states only. In our example, this limiting value is equal
to A(c0) = 0.067 and one can check it in Fig. 4, too.
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Figure 4. Hazard rates, A(f), (risk to attain the state 1) as functions of time, t, for
different initial population distributions: pg = (0,0.25,0.25,0.25,0.25) (thin solid),
initially in state 2 (solid), state 3 (dashed), state 4 (dotted) and in state 5 (dash-dotted).
The right hand side figure is a detail of the left hand side plot.

3. Hazard rate in model with continuous state space

We continue with the examination of the shape of the hazard rate function driven by
a stochastic process. But now, we take the underlaying process with continuos state
space. Specifically, let the state space of the process is a positive half line [0, 00) with
an absorbing state 0 which will represent the event of our interest. We skip the usually
mentioned random walk and start with a very specific and deeply studied random pro-
cess called Brownian motion with drift as mentioned in (Aalen et al., 2010). We use
this process analogously to describe the evolution of the probability distribution of the
population among the state space, which is now assumed to be the interval [0, c0).

Brownian motion (or Wiener process) with drift is random process X (#) given by the

formula
X(t)=c—ut+oW(t), t>0.

The parameter ¢ > 0 is the initial value of the process, # > 0 is so called drift pa-
rameter and o > 0 is a parameter which controls the amount of randomness involved
in the process. The variable W(t) is a special random process, which is called stan-
dard Wiener process (or standard Brownian motion). Its name is usually referred to
Robert Brown due to the similarity of the graph of this process with the trajectory of
pollen grains he had observed. This random process W () has very special mathe-
matical features, let us mention the most important: for every fixed time ¢t > 0, the
random variable W (#) has normal distribution with zero mean and variance equal to
t, the trajectory (sample path) of W(t) is everywhere continuous but nowhere differ-
entiable. The properties are a bit unusual and in some sence in contradiction with our
common thinking. The property of the variance means that the time variable some-
how propagates into the value of the process, heuristically written as [AW (£)]? ~ At.
The nondifferentiability brings causes many problems with the mathematical treatment
of the process. Roughly said, when working with Brownian motion (with or without
drift) we can not use the common calculus. Instead, so called stochastic differential,
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stochastic integral and new rules to deal with such a process must be given. For details,
we refer the curious reader to some textbook of stochastic analysis, e.g. (Karatzas and
Shreve, 1991).

Nevertheless, the Brownian motion with drift was proved to be an underlaying process
for some known shapes of the hazard rate function. And not only in the survival anal-
ysis, but also in the theory of reliability, mathematical finance (used for description of
the stock prices) in neurophysiology (used for description of the membrane potential).
Despite the different mathematical treatment, it is relatively tractable to work with the
Brownian motion with drift in simulations. The basic idea uses the property of the
normal distribution of the standard Wiener process and is based on the generation of
short-time increments, AX(t), from which the resulting process X (#) comes as their
cumulative sum,

X(0)=c,  X(t+At)=X(t)—uAt+oAte(t), t>0.

Here, £(t) are elements of a random sample taken from standard normal probability dis-
tribution. We choose a time interval of length At and generate a large sample &(¢) from
the standard normal distribution. Then the procedure in the last formula is repeated
in a loop, until the values of the process X (t) for required time length is obtained. If
Deltat is short enough, the result is good approximation of the theoretical Brownian
motion with drift.

We generate many, say at least 1000, trajectories with the same parameters. Because
we are interested in particular event, entering the absorbing state 0, we calculate so
called first hitting time to zero boundary,

T = inf{t > 0, X(t) <0},

from each trajectory of X (). In this way we obtain a sample of the first hitting times
to zero boundary and we can plot its histogram and estimate its probability density
function. A plot of few trajectories and a histogram of the sample first passage times
Tp are shown in Fig. 5.
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Figure 5. Left hand side: eight trajectories (sample paths) of the Brownian motion
with drift. Parameters are ¢ = 2, 4 = 1 and ¢ = 1. Right hand side: histogram of the
sample of the first hitting times of 1000 trajectories of the Brownian motion with drift
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with the same parameters. The solid curve is the corresponding probability density
function of the inverse Gaussian distribution.

It was proved that the first hitting time, Ty, to the zero absorbing boundary has inverse
Gaussian distribution. For comparison, the theoretical probability density function is
added to the histogram in Fig. 5. It is given by equation (Chhikara and Folks, 1989;
Karatzas and Shreve, 1991)

__ ¢ (c—pt)?
0= = 5|

The corresponding survival function is equal to (Chhikara and Folks, 1989)

c—ut —c—ut 2uc
st —o (1) o exp (245).
Vot Vo2t Pl
Both the functions f(#) and S(t) for some different different initial values ¢ are shown
in Fig. 6.
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Figure 6. Probability density functions, f (t), (left hand side) and survival functions,
S(t), (right hand side) of the inverse Gaussian distribution with initial value ¢ = 2
(solid), ¢ = 1 (dashed), c = 3 (dotted) and parameters = 1 and o = 1.

The corresponding hazard rate A () at time ¢ is equal to A(t) = f(t)/S(t). The shapes
of the hazard rate A(t) in dependency on time t are shown in Fig. 7. The hazard rate
functions for the Brownian motion with drift exhibit the same stability phenomenon
as for the finite-state models. Regardless of the initial value, c, they all converge to
the same limiting hazard. If c is close to zero, we get a decreasing hazard rate. For
intermediate values of ¢ one gets a hazard which first increases and then decreases; this
is the typical shape of the hazard rate for many continuous state space models. For very
large large c, an increasing hazard rate is obtained.
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Figure 7. Hazard rate functions, /\(t), (risk to attain the state 0) for the same three
settings of the initial value and the parameters as in Fig. 5.

Note that the shapes of the hazard rate are very similar to those from the finite state
model in the previous section. That is one of the objectives that the continuous state
space processes play an important role in the survival analysis. These models are
although more difficult to mathematically treat, however, they offer more flexibility
to model the shape of the hazard rate, especially when other so called diffusion pro-
cesses (Brownian motion with drift is one example, another well studied is Ornstein-
Uhlenbeck process) are used for the underlaying stochastic process.

At the end of this contribution, we show how simple it is to randomly generate the
trajectories of the Brownian motion with drift. We hope it would simplify the way the
reader needs to begin to discover the behaviour of the Brownian motion with drift and
to obtain the sample of the first hitting times to zero boundary by the simulations. We
present the following codes in R language (R Development Core Team, 2012). The
first function takes the parameters c, 4, 0, At, T on its input and returns a vector of the
values of X(t) for time instants from 0 to T with the step of length At.

Bmwd <- function (c, mu, sigma, dt, T) {

# number of increments

n <- ceiling (T / dt)

# generating of random increments

dW <- rnorm (n, mean = 0, sd = 1) x sgrt (dt)
# increments of Brownian motion with drift
dX <- sigma * dW - mu * dt

# cumulative sum if increments (initial=c)

X <= cumsum (c (c, dX))

return (X)

}

The second function calculates the first hitting time to zero absorbing boundary from
the trajectory of X(t); its parameters are the vector of X(¢) and the time step At. We
note that this leads to a rough approximation of the first hitting time. More precise
method for the simulation is given in (Giraudo et al., 2001).

Fht <- function (X, dt) {
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# find indices wheres trajectory<=0
hitting.times <- which (X <= 0)
# return NA if there is no such index

if (length (hitting.times) == 0) return (NA)
# else return the first time
return ((hitting.times([1] - 1/2) * dt)

}
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Abstract

This paper presents some basic principles and methods used when dealing with survival
data and developing new results. All processes are illustrated by an example
of developing anew approach to parametric regression in survival analysis. Some
techniques how to choose the most adequate probability distribution of the data are
mentioned. The distributions are transformed in order to get more accurate results. The
results are compared with the standard ones according to Akaike‘s information
criterion.
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1. Introduction

Every researcher has to face many problems and pass many cross-roads when attempting
to obtain new results. The best decision in a single step does not need to be the best for final
results. Sometimes it is very tricky to find the simplest and flat way out of the jungle.

This paper can be engaged as a basic guide for those who are starting with their research and
are not sure how to get along. It aims at the problem of using parametric methods in survival
analysis.

All principles are illustrated by an example of developing a new approach to parametric
regression in survival analysis that is an already running author’s research.

1.1. Problem to be solved

Parametric methods are one of the possible tools that can be used to estimate the survival and
hazard function for given data. They are not as popular asa Cox model, but they can
be useful in some special situations, especially when the assumptions of the Cox model
are not met.

The greatest disadvantage of the parametric methods is the need to assume a particular
probability distribution ofthe data. Exponential, Weibull, log-normal and gamma
distributions are the most often used for this purpose. All of these distributions are defined
in infinite interval {0; ), that may theoretically cause overestimation, especially at longer
survival times. The above mentioned distributions can respect constant, monotone
or unimodal shape of hazard function. Problems arise when it is necessary to model more
complex shapes, such as abathtub shaped hazard function where the hazard declines
at the beginning of observed time period, remains almost constant in the middle and rises
at the end. Bathtub hazard function occurs very often in survival data. There are some more
complex distributions that can be used to handle the problem, such as three parametric
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generalized Weibull or generalized gamma distribution. These are not so widely used,
because they are not implemented in basic statistical software. Other solution is to take
a mixture of more distributions, but the process is not so easy and intuitive.

Our aim is to develop some new distributions defined in a finite interval that will be flexible
enough to follow various shapes of hazard function and will avoid the overestimation
of the survival function in longer survival times.

1.2. Data

All of the used processes should be optimized for particular data. We use data of 333 women
who suffered from breast cancer diagnosed in stage IV of the disease in Czech Republic
in 1990. The analysed sample contains 8 right censored observations. Maximum observed
uncensored survival time is 5753 days.

It can be useful toplot agraph of nonparametric estimates ofthe survival and hazard
functions to see the basic character of the data.
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Figure 1. Kaplan-Meier nonparametric estimate of survival function and nonparametric bin
estimate of hazard function

As we can see, all of the censored survival times are situated at the end of the studied time
interval. Probability of survival slumps to the time of 2000 days and after this time declines
slowly. The hazard of death declines, but slight growth can be seen at the end of the observed
time interval.

2. Methods

The step-by-step process of the research will be described in this section. We start
with parametric distribution selection and the estimation of its parameters, which is the basic
proceeding in parametric modelling. We determine our own problem when estimating
survival function of the given data and propose its solution. We work with functions without
covariates only to show basic principles. All results can be extended to deal with covariates.
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2.1. How to choose the most appropriate distribution of the data

The first step when using parametric methods is choosing the probability distribution that is
the most appropriate for given data. There are many methods how to perform this selection.

One option is using various distributions to estimate the survival function without the data
character consideration. This can be very long and computationally tedious process.

Other way is to think about the data and try to find the distribution that is the most suitable
for its character and construction. Shape of the hazard function can be one of the selection
criterions. Exponential distribution, as the simplest one, can be used to model constant
hazard. Weibull and Gamma distributions can respect monotone course. Log-normal
distribution is suitable for modelling the hazard curves with one vertex.

We can inspire ourselves with older researches that worked with the similar data and use
the same distribution as mentioned there. This approach, however, is not actually proper
in many situations. Every small variation in data characteristics or research conditions can
cause indispensable changes in final result.

We can also use some numerical methods for distribution fitting. Unfortunately,
these methods can be computationally demanding and require wide analytical capabilities.
The problems with the additional accuracy of numerical methods often arise.

Usually, researcher tries touse the most simple and effective way to reach the goal.
Graphical methods are the best choice for the purpose. They are used for displaying and
interpretation of the data. The basic idea of graphical methods used in distribution fitting
isto see whether the survival time, ora function ofit, has linear relationship with
the distribution function and the cumulative hazard function ofa given parametric
distribution, or functions of them. The graphical demonstration of such a relationship should
be a straight line. The distribution that subjectively fits the straight line most precisely should
be the best choice for us.

Two most popular graphical methods are probability and hazard plotting. The basic idea
of these methods is estimating the sample cumulative distribution function (or cumulative
hazard function) and its comparison with a selected theoretical distribution for the survival
time (Lee and Wang, 2003). The principal difference between the two approaches is
that the hazard plotting is designed to handle censored data.

We can try to fit many various distributions to see which one gives the best results for our
data.

After applying the standardly used distributions mentioned in paragraph 1.1, probability and
hazard plotting demonstrate that the Weibull distribution seems to be the most appropriate
for our data.

2.2. How to estimate distribution parameters

Although many methods for estimating parameters have been developed, only a few of them
are able to work with censored data.

Maximum likelihood method is the most widely used one. We have to change the standard
maximum likelihood method, so that it would be able to handle censored data. It acts
as standard maximum likelihood for uncensored data and replaces probability density
function by survival function when censoring occurs (Hosmer and Lemeshow 1998).

We can work with a likelihood function in form
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L((t,©), B) = T[S (t, OIS (i, BT 13, ()

or apply its logarithmic form shaped as

l((t, ), ﬁ) =Yl In[f(t, B+ (A —c) InS(t;, B}, (2)
wheref (t;, B)is a probability density function and S(¢;, B) a survival function for a survival
time t;,B is a vector of estimated parameters and c is an indicator of censoring defined as

_ { 1, ift;observed;
% =0, ift;censored.

After obtaining the likelihood (or log-likelihood) function, partial derivatives with respect
to parameters from vector Bare taken and the likelihood equations are determined in form

ol((t,0),B) _
ap;

We obtain maximum likelihood estimators of parameters solving the system of the above

mentioned equations. Usually, the explicit solution cannot be found. In such a case

the numerical optimization has to be used. It brings some other problems with computation,
such as initial values selection.

0. 3)

As to particular results, we obtain log-likelihood function for Weibull distribution in shape
b pe1g-(1) )
l((t, c), (A,b)) =" i¢ln wtioe + (1 —¢)Infe \2 . 4)

After maximizing this function we get the parameter estimators

A =620.270 (5)
b=0.617

We can use the Weibull distribution with these estimated parameters to fit the survival
function for our data and compare the result with the Kaplan-Meier estimator of survival
function shown above.

Survival function

—— Kaplan Meier nonparametric estimate
bull parametric ests

- = Wei

Survival rate

T T T T
0 2000 4000 6000 8000 10000

Time (days)

Figure 2. Comparison of nonparametric Kaplan-Meier and parametric Weibull survival
function estimates
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2.3. How to improve the estimates

Previous picture shows that Weibull distribution fits the survival function quite precisely.
However, it overestimates the probability of surviving around 2000 days and underestimates
it in longer observed survival times. Problem can come out when extrapolating the results
into the future. Weibull distribution is defined in the interval (0,00), thus there exists some
probability, that the patient can live, for example, 1000 years. This is of course not possible.

It can be useful to find some other distribution that is defined in finite interval. This means
there exist some end points that can be interpreted as a maximum possible survival time
for a patient with particular diagnosis.

We can try to transform the standardly used distributions to follow the above mentioned
properties.

2.3.1. What type of transformation function to choose?

We need to find some transformation function f with values inrange (0,a), where a is
the maximum value. This means that f(t) =0for t =0 and f(t) asymptotically
approaches a as t — co.

As examples of such functions we can introduce

_ akt
n® = 14 kt
y2(t) = a(l —e*)
y3(®) = ae) (©)
2a
ya(t) = Txeok
_ 2a
O =T d

where k > 0 is the shape parameter.

But which of the functions is the most appropriate? We can determine some additional
characteristics of the functions. If it is not possible to do so, the only chance is to apply more
functions and choose that with the best results. The additional properties can arise during
the process.
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Figure 3. Shapes of various transformation functions with given values of parameters
a =5000, k =0.0005,¢ =0.1

2.3.2. How to transform the standard distributions
Suppose that F(t) is a cumulative distribution function and f(t) is the probability density
function of the standard distribution. G (t)is a cumulative distribution function and g(t) is

the probability density function of the newly obtained distribution. y is a transformation
function.

Basic properties of the transformed distribution can be taken using following formulas:

G)=P(T<t)=P(y<t)=P(T<y H)=F@y™)

gO=6®=fo™H- - (7)
S =1-6G()

_g(@®)
MO =50

The results can be compared according to the value of log-likelihood function obtained
when estimating the parameters of transformed distributions.

After transforming the Weibull distribution wusing all five transformation functions
and applying the maximum likelihood method we obtain following values of log-likelihood
function.

Table 1. Values of log-likelihood for different transformation functions

Transformation

function Log-likelihood
V1 -2453.862
¥, -2460.994
V3 -2769.675
Vs -2450.197
s -2453.192
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We obtain the highest value oflikelihood function for the transformation function
2a
ya(t) =

T @ which is part of the sigmoidal function.

Sigmoidal transformation

5000
|

4000
1
\

— k=05
/ k=0.05
- ---- k=0.005
-=- k=0.0005
- — = k=0.00005
-—- k=0.000005

transformation
3000
N,
\
|
1

2000
!

1000

Is:.

0 1000 2000 3000 4000 5000 6000

t

Figure 4. Sigmoidal transformation for various values of k

3. Results

Weibull distribution seems to be the most appropriate to fit the breast cancer data according
to probability plot. The distribution is transformed by sigmoidal transformation function.
Basic descriptive functions of'the newly obtained transformed Weibull distribution are
as follows:

Probability density function

Fo) = 2 (L t) T i) )

[(a%-t2) L7 a+t

Cumulative distribution function

b

Ft) =1 — e (Te5) ©)
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Survival function

SO = 1- F(o) = o115 (10)

Hazard function

b-1
he) =L8 =22 (~2m=t) (11)

S@)  l(a?-t?) 17 a+t

Note that all of the equations contain parameter [ that is a component neither of the Weibull
distribution, nor ofthe transformation function. In fact, it is a product of the distribution
parameter A and the parameter k that comes from transformation function. These two
parameters occur always in product, so they can be replaced by parameter | = 1k > 0.

The next step is estimation of the parameters by the maximum likelihood method. It is
applied in the form of

1((t,0, (@ b,D) = 57 1{Clln (l(azza_btiz) (e i )b> +(—-c)hn (e (-inze) )](12)
Maximum likelihood estimates of the parameters obtained for the experimental data are
b=0613

[=0.148 (13)

a = 8357 days
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Figure 5. Estimated survival functions using Weibull and transformed Weibull distributions
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Hazard function estimates
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Figure 6. Estimated hazard functions using Weibull and transformed Weibull distributions

4. Conclusions

Transformed Weibull distribution seems to fit the survival function similarly to Weibull
distribution. Small differences arise for the longer survival times observed. Contrary
to the standard Weibull distribution that goes to infinity, the transformed Weibull distribution
ends attime 8357, which is about 23 years. This survival time is reasonable and can
be considered as estimated maximum possible survival time.

We can use Akaike’s information criterion as a formal comparative tool (Bradburn et al.
2003). The Weibull distribution is more appropriate than the transformed Weibull
distribution according to the criterion, but the difference is only about 2%o.

It is mostly caused by greater complexity and higher number of parameters
of the transformed Weibull distribution. Nevertheless, the distribution has some special
properties that can make it more suitable in some situations. Its great benefit is the ability
to fit the bathtub hazard function. Standard Weibull distribution can fit only a monotone one.
The other gain is the already mentioned estimate of maximum survival time.
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Sample size and power analysis
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Abstract

Determination of appropriate number of subjects to be included in an epidemiological
or clinical study is one of the most important tasks in designing of the study. The
number of subjects enrolled has direct relation to probability of true significant results
(statistical power), to duration and to costs of the study. The sample size is estimated in
order to achieve sufficient power which depends on expected difference between
compared groups, type of analyzed variable (binary, continuous, censored), type of
hypothesis (superiority, non-inferiority, equivalence), and other factors, e.g., variability
of data. Further, understanding of factors which affect the power of statistical analyses
is also important in statistical considerations and interpretations of statistical results. In
this article the main aspects of sample size calculation and power analysis are explained
and practical examples are presented.
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1. Introduction

Sample size, power of statistical test (i.e. probability of rejection of Hy if it is really false)
and difference between compared groups (e.g. treatment effect in placebo-controlled trial)
are three closely related milestones of inferential statistical analysis.

It is obvious that sample size estimation is particular in designing of studies which compare
two groups; however, the sample size should be justified also in case of observational studies
in order to achieve sufficient precision of characteristics’ estimates.

The sample size/ power calculation and consideration is critical in designing of the clinical
trial; however, is also important in interpretation and justification of statistical results,
especially in lack of significant result.

2. Basic statistical consideration

2.1. Type I, Type Il error, alpha and beta

Rejection of Hy if the hypothesis is true is called type | error. Probability of type | error is
called alpha (level of significance).

Not rejecting of Hy if the hypothesis is false is called type Il error. Probability of type Il error
is called beta.

Power is defined as 1-beta, i.e. probability of rejection of Hy if the hypothesis is false.
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Table 1.Type I and 1l error

Reality
Results of test Hgis true Hgis false
Hy not rejected Correct conclusion Type 1l error (beta)
H, rejected Type | error (alpha) Correct conclusion (1-beta) = power

2.2. Three communicating vessels (effect — power — sample size)

The most common task of sample size calculation/ power analysis is related to comparison of
two groups, i.e. testing of the following hypotheses:

H:6+06,
:6=06, VS. H,:0<6,
H,:6>86,

The sample size is mainly affected by the following factors:
1. Level of significance
2. Power

3. Effect (difference in compared groups — treatment groups, males vs. females, with vs.
without disease,...)

Level of significance

Sample size is highly dependent to the level of significance; however, the level of
significance usually given by guidelines. Standardly used level of significance is 0.05. In
some cases level of significance 0.01 could be required. In case of multiple testing the level
of significance needs to be adjusted by appropriate manner (e.g. using by Bonferroni
correction).

Effect, power and sample size

Difference between the groups (effect), power of statistical test and sample size are very
closely related. First, the higher sample size gives us higher power to reject the Hy, i.e. we
will have higher probability to demonstrate the difference between groups if it really exists
(Figure 1). Second, higher effect gives us higher power to reject Hy, therefore, lower sample
size is necessary (Figure 2, Figure 3).

With very high sample size we will be able to demonstrate significant difference between
groups although size of the difference could be very small. Important is to demonstrate
meaningful (e.g. clinically relevant) difference as statistically significant, especially for non-
inferiority and equivalence studies the determination of margin is one of the critical point
during designing of the study (see section 3).

Sample size of clinical trials is usually calculated to achieve power 80% or 90%.
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The relationship effect-power-sample size needs to keep on mind also during analysis and
interpretation of statistical results. In epidemiological research, the large sample sizes are not
exceptional. In order to make appropriate interpretation of the results the size of the
demonstrated effect needs to be taken account. Demonstration “only” statistical significance
is not sufficient. In case of lack of power to demonstrate statistical significance it is useful to
perform power analysis on given data in order to see which power was achieved and how
many subjects would be needed to achieve e.g. 80% power.
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Figure 1. Relationship between sample size and power of t-test for fixed effect
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Figure 2. Relationship between effect and sample size for fixed power 80% and 90% of t-
test
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3. Role of sample size/ power calculation in clinical trials and in
interpretation of results of statistical analyses

Sample size/ power calculation in designing of clinical trials

The number of subjects/patients to be enrolled in the clinical trial needs to be fixed before
the start of the study. Thus, the sample size needs to be determined in order to enable
sufficient power to achieve objective of the trial with given design. In general the designing
of the clinical trial consist of the following steps:

1. Determination of “clinical” hypothesis, i.e. what we would like to show, demonstrate,
determine in our study

2. Selection of primary endpoint (clinical parameter on continuous scale like blood
pressure, level of glycosylated hemoglobin, incidence of disease/ cardiovascular
event, relapse of disease, quality of life)

aa b~ w

epidemiological data

~N O

. Selection of design (parallel, cross-over)
. Specification of the statistical hypothesis, methods of analysis

. Assumptions based on results previous studies, review of articles, analysis of

. Sample size calculation (drop-out needs to be add up)

. Consideration whether it is possible to enroll such a number of subjects regarding

time, cost, incidence of disease (in given region) usually follows.

Role of sample size/ power consideration in interpretation and justification of analysis results

At least power consideration should be a part of interpretation and justification of the results
of analysis, especially in lack of significant result. The following questions should be
answered in order to interpret the results appropriately:

79



e In case of significant results, has the difference (or another statistic odds ratio or
hazard ratio) meaningful size?

e Was the lack of significant results caused by small difference between compared
groups?

e Was the lack of significant results caused by small difference between compared
groups?

¢ Or did not we have sufficient sample size? If not, how many patients we would need.

e What about the previous research — how many patients they had to demonstrate the
significance. Was the same primary parameter (binary, continuous) used in previous

research? Was the statistical method used in previous research the same? There is
some reason why our results should differ?

e Was there another factor which influences the results? If possible we should adjust the
results for that factor.

¢ Is not high variability in data caused by difference characteristics of the subjects? If
yes, it usually leads to adjustment or subgroup analysis.

4. Common task for sample size calculation

4.1. Superiority, non-inferential, equivalence study
Superiority trial is designed to demonstrate difference between treatments.

The tested hypothesis is: Ho: 6 = 0 vs. Hy: 0 # 65, where 6 is parameter of tested group and
0, is parameter of reference group (Figure 4). The input for sample size/ power calculation is
the null hypothesis, i.e. that we will test that the difference is zero (as the most often case),
assumed size of effect and further factors discussed in section5.

93%CONFIDENCE INTERVAL
1 | | SUPERIORITY SHOWN

p=0.002 I I | MORE STRONGLY
p005 | i | SUPERIORITY SHOWN
02 | | | SUPERIORITY NOT SHOWN
CONTROL 0 NEW AGENT
BETTER BETTER
TREATMENT DIFFERENCE

Figure 4. Relationship between significance test of superiority trial and confidence interval.
Source: CPMP/EWP/482/99

Non-inferiority trial is designed to demonstrate that the new treatment has not less effect, i.e.
that is more effective or have the same effect as reference treatment. Non-inferiority margin
has to be a priory defined.

The tested hypothesis is: Hg: Ay < -A vs. Hy: Ay > -A where Ay is detectable difference
between tested and reference groups (tested - reference) and A is non-inferiority margin
(Figure 5). The input for sample size/ power calculation is the null hypothesis, i.e. that we
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will test that the difference is above -A, the size of A (usually based on guidelines or clinical
consideration), assumed size of effect and further factors discussed in section 5. The sample
size needed in non-inferiority trial is usually higher than for superiority (depending on
assumptions and the margin).

| } | NON-INFERIORITY SHOWN

.
[ | | NON-INFERIORITY NOT
m ! sown

CONTROL o NEW AGENT
BETTER BETTER
TREATMENT DIFFERENCE

Figure 5. Relationship between significance test of non-inferiority trial and confidence
interval. Source: CPMP/EWP/482/99

Equivalence trial is designed to confirm absence of meaningful difference between tested
and reference treatment (e.g. used to confirm that both tested and another treatment has
equivalent distribution of the active substance in a body). Equivalence margin has to be a
priory defined.

The tested hypothesis is: Hy: Ag < -A OR Ag > +A vs. Hy: -A< Ap < +A, where Ag is
difference between tested and reference treatment (tested - reference) parameter of tested
group and A is equivalence margin (Figure 6). The input for sample size/ power calculation
is the null hypothesis, i.e. that we will test two one-sided hypothesis with the margin A, the
size of A (usually based on guidelines, e.g. 80-125%, or clinical consideration), assumed size
of effect and further factors discussed in section5.

|—|_—| EQUIVALENCE SHOWN
| | | EQUIVALENCE NOT SHOWN
-A +A
CONTROL i NEW AGENT
BETTER BETTER
TREATMENT DIFFERENCE

Figure 6. Relationship between significance test of equivalence trial and confidence interval.
Source: CPMP/EWP/482/99

4.2. Phase IV study and precision estimates

The current practice is that sample size for Phase 1V studies has to be justified. The Phase IV
studies are “post-marketing surveillance (PMS) studies but every PMS study is a phase IV
study. Phase 1V is also an important phase of drug development. In particular, the real world
effectiveness of a drug as evaluated in an observational, non-interventional trial in a
naturalistic setting which complements the efficacy data that emanates from a pre-marketing
randomized controlled trial (RCT).”(Suvarna 2010)

Therefore, the objective of the study is usually to determine the effect of the treatment in
clinical practice. The sample size justification is based on precision estimate, usually width
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of confidence interval. In order words the sample size is determined to provide sufficiently
narrow confidence interval.
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Figure 7. Relationship between half-width of 95% confidence interval for mean and sample
size

Example 1:

Type of study: Non-intervention study

Objective of the study: determination proportion of patients with dyslipidemia who achieve
target values of LDL-cholesterol after 12 month of therapy.

Sample size justification: Analysis of 3400 patients enables to determine the proportion of
patients achieved the target values with precision (i.e. width of 95% Wald confidence
interval) 3.36%. Taken account the worst scenario that only 50% of enrolled patients will be
possible to include into analysis — the width of confidence interval would be 4.74%. (Results
of the study published by Hradec et al.).

5. Factors influencing the power of statistical analysis

As was explained above the sample size is mainly affected by the following factors:
1. Level of significance
2. Power
3. Effect

The main factors which affect the power of the statistical test are the following:

Factors depending on type of data:

1. Variability of data (for continuous data)
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2. Proportion in reference group (for binary data)
3. Incidence of the event (for censored data)
4. Type of data (categorical, censored, continuous)

5. Type of test (parametric vs. non-parametric)

Factors depending on design:

6. Ratio of number of subjects in groups to be compared
7. Parallel vs. cross-over design

5.1. Continuous data

Elements needed for sample size/power calculation if continuous parameter is planned to be
compared, e.g. using by two sample t-test:

o Effect = difference in mean values of compared groups
e Variability of data = standard deviation

e Type of test (one sided, two sided, for equal/unequal SD)

Variability of data decreasing power of the test, implying more subjects is needed to include
into analysis to achieve significant results. The relationship is not linear however depends on
the effect size (Figure 8).

Figure 8. Relationship between effect and sample size for fixed power 80% of t-test and
various SD

Example 2 (modeled study):

Type of study: Non-intervention study, non-inferiority study

Objective of the study: to compare levels of glucose in two groups of diabetic patients
according baseline characteristics.
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Sample size justification: The total number of 410 patients needs to be analyzed in order to
achieve 90% power to demonstrate that group A is not inferior to group B in change of levels
of glucose. According to clinical meaningful difference the non-inferiority margin was set to
1.5%. The sample size was established under assumption that difference between groups is
0.5% and standard deviation 3%. Taken account 10% drop-out the total number of patient
planned to be enrolled into the study is 456 patients.

Selection of more specific subgroup of the study population would give us assumption of
lower standard deviation (e.g. 2%). Given this assumption the total numbers of patients are
140 patients analyzed and 156 enrolled.

5.2. Binary data

Elements needed for sample size/power calculation if binary data are compared:
1. Effect = proportions in both groups

2. Type of test (one sided, two sided, chi-square, fisher, ...)

While power of t-test depends on effect size (the difference of means) regardless the mean
values in compared groups the power of chi-square test depends on both — the effects size
(the difference of proportions) and proportion in reference groups. Towards to 50% in
reference groups higher number of patients is needed to demonstrate the significant
difference (Figure 9).
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Figure 9. Relationship between effect and sample size for fixed power 80% of chi-square
test and various proportions in reference group

Example 3 (modeled study):
Type of study: Superiority study

Obijective of the study: to compare proportion of patients with improvement after treatment
with study drug vs. placebo.

Sample size justification: The total number of 712 patients needs to be analyzed in order to
achieve 80% power to demonstrate that proportion of improved patients treated with study
drug is superior to those treated by placebo if the following assumptions are fulfilled:
proportion of patients with improvement in study drug group 40% and in placebo group
30%.
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In another study the proportions of patients with improvement are assumed to be higher 40%
vs. 50% but the same treatment effect of 10% could be expected. The total number of patients
to be enrolled is 776 patients.

5.3. Censored data

Elements needed for sample size/power calculation if censored data are compared using log-
rank test:

1. Effect = reduction of incidence of the event

2. Incidence in reference group

3. Duration of the follow-up

4. Duration of accrual time (e.g. period of enrolment)
5. Type of test (one sided, two sided)

For power and sample size of the censored endpoint the number of events is the most
important.

Alternatively,

1. Effect = median time of “survival” in both groups
2. Duration of the follow-up

3. Duration of accrual time (e.g. period of enrollment)
4. Type of test (one sided, two sided)

For censored data, number of events is the most critical feature in analysis of censored data.
Therefore, incidence of the event in the study population and duration of follow-up change
the power of log-rank test and sample size (Figure 10 and Figure 11, respectively). Effect of
both incidence and duration of follow-up on the sample size is presented in Figure 12.

incidence 3 %

Power
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Figure 10. Relationship between power of log-rank test and duration of follow-up for
various incidences of the event and fixed sample size. Source: Kadlecova 2009
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Figure 11. Relationship between sample size and power of log-rank test for various
incidences of the event. Source: Kadlecova 2009
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Figure 12. Relationship between sample size and incidence of event and duration of follow-
up. Source: Kadlecova 2009

Example 3:

Type of study: ROADMAP: The Randomised Olmesartan And Diabetes MicroAlbuminuria
Prevention study (Haller et al., 2006)

Obijective of the study: to demonstrate decreasing incidence of mikroalbuminuria using by
olmesartan medoxomil comparing to placebo

Given the assumption of 2% incidence of mikroalbuminuria , 30% reduction of the incidence
by using the study drug the duration of the study was planned was planned to 5 years and
2020 patients per group was planned to be enrolled in order to achieve 90% power of log-
rank test.

Results of interim analysis after 3 years shows that incidence of mikroalbuminuria is 3%.
The decreasing of sample size was not possible as the patients had been already enrolled.
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However, it was possible to shorten the follow-up. With given sample size 2020 patient per
group and 3% incidence the 90% power of log-rank test is achieved after 3.34 (Figure 12.)

5.4. Type of data (categorical, censored, continuous)

Type of the parameter to be analyzed is very important factor which has effect on the
statistical power. As the continuous data include the most information they are the most
powerful. For comparison of binary parameters the most number of patients is needed. It is
quite usual that sample size needed for binary and censored endpoint is only slightly
different.

Example 4 (modeled study):

In order to demonstrate the effect of the type of primary endpoint to sample size let’s suppose
a model parallel study with active control which objective was to demonstrate effect of new
treatment on decreasing of BMI after 12 month of therapy.

The following primary endpoints could be taken account:
a. Change from baseline in BMI (i.e. continuous data)
b. Proportion of patients with decreasing by 4 kg/m? (i.e. binary data)
c. Time needed to achieve the first decreasing by 4 kg/m? (i.e. censored data)

Using the real data from the study we can determine the sample size needed to achieve 80%
power for the endpoints defined above.

a. Change from baseline in BMI (i.e. continuous data)

- Mean (xSD) values in test and reference group were 5.13 (+2.69) and
3.67 (£1.73), respectively.

- The sample size needed for demonstration of significant difference between
treatment groups in the change from baseline in BMI is 77 subjects in total.

- Presented sample size was calculated for t-test for unequal SD in compared
groups.

b. Proportion of patients with decreasing by 4 kg/m? (i.e. binary data)

- The proportions of subjects with decreasing by 4 kg/m? in test and reference group
were 69.39 % and 42.72 %, respectively.

- The corresponding sample size is 108 subjects in total.

- Presented sample size was calculated for chi-square test.
c. Time needed to achieve the first decreasing by 4 kg/m? (i.e. censored data)

- The median time needed to achieve decreasing by 4 kg/m2 in test and reference
group were 166 and 331 days, respectively.

- The corresponding sample size is 102 subjects in total.
- Presented sample size was calculated for log-rank test.
5.5. Ratio of subjects in groups

It is not necessary to have number of subjects in both groups the same. Ratio 1:2 or 1:3 can
be reasonable (e.g. for ethical reasons) but it decreases the power of test. Thus, more subjects
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will be needed in total but in e.g. placebo group will be only a half of subjects. The
increasing of total number of subjects in the study is graphically presented in Figure 13.

In epidemiological research it is usual that the groups are not balanced. If data with very
different counts of subject in compared groups are analyzed the statistician should be aware
that the power and reliability of the results is decreased.

400

N Total

Mean Diff

Ratio of groups: ———— 1 === 2 === =3

Figure 13. Relationship between effect and sample size for fixed power 80% of t-test and
various ratios of groups

5.6. Parallel vs. cross-over design

Paired data obtained by e.g. cross-over study are more powerful to demonstrate the
difference than comparing of independent samples. The sample size is not lower only about
half. In case of t-test, the paired design can decrease the sample size approximately four-
times (Figure 14).

Parallel design Cross-over design

N Total
N Total

Figure 14. Relationship between effect and sample size for fixed power of t-test and parallel
Vs. cross-over design
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6. Cross-validation and simulation in power analysis and sample size
estimation

Epidemiological data could be used for sample size estimation of clinical trials. For sample
size calculation we need assumptions for about the effect and about characteristics of the
study population. We can use epidemiological data or data from previous studies of the
population of interest, simulate supposed effect and calculate power directly from data.

Power of statistical test is probability of rejection Hy if it is really false. Repeating the test
e.g. 1000times we would be able to determine time the exact power for given sample size.
Further, the power calculated by the statistical software could be cross-validated by using the
epidemiological data.

Repeating of power calculation for different sample sizes we can obtain relationship between
power and sample size for the statistical methods which could not be directly calculated
using by statistical software. Useful e.g. for advanced statistical methods or non-parametric
test.
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Abstract

The purpose of this work is to explain the basis of clinical data management to the
students of computational biology and provide them elementary knowledge about this
activity as it might be one of their possible areas of interest and employment. We will
speak about the definition of clinical data management, the prerequisites of successful
data management and its particular components.
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1. What is clinical data management
1.1. Definition

Clinical data management is a process to capture and transform the raw output from clinical
trials into a usable form for statistical analysis and reporting.

It is very important to realize that good credibility and correctness of clinical study result
strictly depends mainly on data. Thus, data management containing data capture, data
processing, data validation and data storage strongly participates on the clinical trial results.

1.2.  Objectives
The objectives of good clinical data management should be:
e Tocollect all relevant data
e Toclean up all discrepancies and conserve the original information
e To assure the quality of collected data
e To provide accurate data in proper format for statistical analyses

e To store data for eventual review or further evaluation

2. Crucial information before starting with data management

2.1.  Position of data management in terms of whole clinical study process

We can generally say that the sooner the data manager is involved in the project the better it
is for the project. The ideal situation is when data manager can participate on the creation of
study protocol. This is the moment when all the activities planned in the study are prepared,
discussed and consequently fixed.
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The first possible action performed under the responsibility of data manager is creation of
case report form. From this step, through data transfer, data entry, data cleaning and
validation to final export and archiving we talk about data management process.

Study Protocol
Submission

}

Selection of
Investigators

I CRF C'rt-alion I -
|

I Data Collection I

|

I Data Entry I

|

I Data Validation I

|

I Quality Control I

I

I Database Lock I
|

Y

I Statistical Evaluation I

I

I Clinical Study Report I

Figure 1. Position of data management in context of whole clinical study process

2.2. Data flow

Before starting with data management it is important to think about number and structure of
data planned to be captured and processed. Besides crucial data displayed in case report
forms, we can have specific sheets with laboratory data coming from local laboratories, set
of laboratory data coming from central laboratory — usually transferred electronically and
several inputs provided directly by patients like quality of life questionnaires or patient
diaries. It is very important to know which sort of data are required and for what purposes
they are captured. Such information is very helpful for successful setup of a clinical database
and related coherence checks.

2.3.  Important documents

There are two major documents for data management process. The first of them is study
protocol containing all clinically relevant information, basic aspects of planned statistical
analyses, the list of data to be collected, etc. Study protocol shall be followed during whole
study process as the clue in case of some doubts.

The second important document is case report form (CRF). CRF is basic tool for complete
data management process as a source for creation of clinical database and consecutive steps.

Data manager should take care to be in accordance with both study protocol and CRF during
whole study process.
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2.4.  Standard operating procedures

Standard Operating Procedures (SOPs) are set of documents specific for each company and
contain written instructions ensuring integrity of all performed activities. It is set of general
rules describing how to perform particular tasks in each single activity. These instructions
are in line with good clinical practice and contain link to all controlled documents used as
templates for each particular project during the data management process.

2.5.  Triangle principle

During the process of data management it is important to keep in mind continuous approach,
so called triangle principle. This principle presents continuity of process in three different
styles but in tight relation. At the first angle of triangle we can imagine activity (creation of
database, programming of check, etc.), at the second angle we can imagine document
describing this activity (e.g. document called Validation Plan describing all the checks to be
applied on entered data), at the third angle we can imagine SOP giving rules how to perform
the activity. It is important to realize the link between each two angles — connection like in
the triangle:

e SOP - Template: Each template has link to at least one SOP.
e SOP - Activity: Each activity has background in at least one SOP.

e Activity — Template: Each activity is documented, can be reviewed, validated and
eventually reconstructed.

3. Clinical data management process

The clinical data management process consists of many activities as shown in Figures 2 and
3 below. We can divide the global process into four main areas according to the status of
project.

3.1.  Setup activities
3.1.1. Project setup

Before doing any action we must be sure that we exactly know what to do and how to do it.
As mentioned before we need knowledge about data flow and we should dispose of the two
crucial documents, study protocol and CRF. Then we are able to dialogue with different
people involved in the study and manage specific steps for successful setup of clinical
database.

3.1.2. Database setup

Another and more concrete step is setup of clinical database. Particular details of this process
may differ according to the computational system used, type of data entry preferred for
current project, phase of clinical trial or client’s requirements. However, the general
objective is still the same: building a robust database corresponding CRF structure, matching
to parameters defined in the protocol and containing required functionalities. Following
necessities have to be assured:

e Database content. It must be assured that all relevant data are collected.

e Database structure. Particular variables must be organized in a way enabling easy
and transparent data entry and comfortable data processing and analyses.
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e Database validation. Database must be reviewed, tested and validated for both
content and structure before provided for use in practice.

3.2. Data entry

Data entry part is relatively easier one from the organizational viewpoint. If project and
database are prepared well, there is no need to modify anything and data are entered into
database according predefined rules. There are two basic options how to enter data into
database.

e Double data entry. This way of data entry is used for the most of clinical trials
where paper CRF is used. The advantage of this option is that all the data are
entered into database twice, by two independent people, which strongly minimize
the possibility of mistake.

e Simple data entry. This option is used for less important trials with lower budget
(e.g. post marketing or non-intervention trials) or in trials where electronic data
capture (EDC) is used. EDC represents approach where investigators enter data
directly into the clinical database usually via internet browser interface.

3.3.  Data cleaning

Data cleaning represents very complex set of activities whose main objective is to review
data entered into the database from many viewpoints to ensure their correctness and validity.
It is a process where eventual inconsistencies found are solved with investigators via queries,
signed controlled forms to document all modifications in data. Some of the data cleaning
steps are:

e Control of format checking whether entered value corresponds to the predefined
format of each variable (defined length of field, minimal/maximal permitted value,
coding options — e.g.: 1 = male, 2 = female).

e Control of coherence checking coherence between two and more variables (required
distance between particular visits, matching between inclusion criteria and related
parameters, etc.)

e Medical coding is the process to standardize mentioned concomitant medication,
medical history or adverse event terms. Text fields containing particular terms are
coded according standard dictionaries and then much more easily processed and
analyzed.

e Medical review is the process to review data from medical point of view. This step
should be performed by medical expert to find inconsistencies among similar
information mentioned on different part of CRF.

e Translation could be used in multi-country trials where text field terms are often
displayed in local language. Unification into one language is usually a standard
process.

e SAE reconciliation is an important process for most of trials. The point of this
process is to reconcile two databases containing information about serious adverse
events occurred during the study duration. Each serious adverse event (SAE) has to
be captured in clinical database (together with other study data) and also in safety
database focused on reporting of SAEs. Not only the number of SAEs but also their
character has to be the same.

93



[ Client + Project

Project Setup

[Masks, Resgonsibslities, Timelines | ]

Setup Activities

|

CRF
creation -

External
Data

L
i
]
I
i/
!

Primary Key

Paragraphs

Database
Creation

Annctated CRF
Generation

Project
Closing

Data Control and Validation

Reconciliation

SAE Coherence
Control

H Coding H Dertved H Format H Eon!ronlahon]

Data Cleaning

Figure 2. Data Management Process using paper case report forms

[ Client + Project H Project Setup ]
[Masks, Responibilities, Timelines)

Project
Closing

Quality Control

Database Lock

Data Export

)

Database/CRF
Creation +
Programming
of Checks

Setup /

. ., 4
Activities [/ External Data
4 Import

/ Data Entry

Data
Validation

SAE
Reconciliation

Medical
Coding

M —

\ Data Cleaning

Figure 3. Data Management Process using electronic data capture system

3.4.

Study closing activities from the data management viewpoint are starting once all the
inconsistencies are found and all the queries sent to investigators are resolved. The boundary
between data cleaning and study closing is on data review meeting. Data review meeting is
very specific and very important meeting organized before locking the database to discuss all

Project closing
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aspects of data, to ensure that all the inconsistencies are solved and to define and fix study
populations for statistical analyses. After this meeting once the last queries are resolved, the
clinical database can be locked. From this moment no modification in database can be done
unless specific requirements are asked by the client. Eventual database unlock has to be
documented properly giving clear reasons for unlock. Anyway, locking of clinical database
is the last step of data management working with data. The remaining activities consist only
of documentation and archiving processes.

4. Conclusion

Clinical data management is very complex process containing a lot of activities. As all the
activities need to be carefully planned and scrupulously met, strong project management
skills are required for successful data management of important clinical trials. It is necessary
to stay kept in touch with all the key people involved in the study and continuously keep in
mind project status and timelines. Only once the database is locked, data manager can slow
down and start preparing materials for archiving.
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Abstract

The objective of this paper is to present a model for estimation of time period
prevalence of cancer patients requiring anti-tumour therapy. Besides incidence
estimate, the model also provides the estimates of patients with terminal and non-
terminal form of cancer. Moreover, the whole estimation process should be accessible
from population-based cancer registry data. The proposed method has been designed
with respect to the extent of cancer because for many types of cancer the clinical stage
is by means of patients’ life-expectation and anticipated financial costs of the treatment
even more influencing than age at diagnosis. To document its applicability, the model
was applied on colorectal cancer data from the Czech National Cancer Registry to
model the number of potentially treated patients with colorectal cancer in the Czech
Republic in 2015.
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1. Introduction

Modern anti-tumour therapy introduces significant improvement in survival of cancer
patients, therefore, leading to increasing cancer incidence and prevalence rates (Ferlay et al.,
2010). Such a progress introduces the essential need for monitoring and prospective planning
of number of patients eligible for targeted therapy, as necessary financial resources need to
be allocated. Estimation of cancer incidence and prevalence can only be seen as the first step
in the process focused on the potentially treated patients as the prevalence estimates need to
be further adequately adjusted for patients untreated from whatever reason (cure for cancer,
treatment contraindication, very high age, patient’s refusal to treatment, advanced stage of
disease). In any case, the cancer prevalence estimation is not an easy task because it cannot
be estimated directly from the population-based data due to time limited registration of the
cancer cases, and has to be modelled. Moreover, the model should be designed with respect
to the extent of cancer because the clinical stage is by means of patients’ life-expectation and
anticipated financial budget impact of the treatment even more influencing than age at
diagnosis (Clerc et al., 2008). The existing models use either only population data (Mariotto
et al.,, 2006) or a combination of population data and clinical records (Gatta et al., 2004;
Chauvenet et al., 2009). In the former case, the model does not employ a concept of cancer
recurrence, whereas in the latter case, the concept of cancer recurrence is considered and the
particular rates are estimated from the hospital records.

The objective of this paper is to present a model for estimation of time period prevalence of
cancer patients requiring anti-tumour therapy. To document its applicability, the model was
applied on colorectal cancer (CRC) data from the Czech National Cancer Registry (CNCR)
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to model the number of potentially treated patients with colorectal cancer in the Czech
Republic in 2015.

2. Patients and Methods

2.1. Patients

The Czech Republic makes use of high-quality population-based data on cancer
epidemiology:

e (CNCR (data administrator and provider: Institute of Health Information and Statistics of
the Czech Republic, THIS) covers the whole population of the Czech Republic
(10,230,000 inhabitants according to the 2001 census) since 1976. Reference dataset
defined for the period 1995-2008 (which is more relevant for recent development)
involves records on more than 500,000 patients.

e Demographic data on the Czech population and the Death Records Database (data
administrator and provider: Czech Statistical Office, CZSO) constitute an indispensable
background information for the predictive assessment of epidemiological data. This data
was used for the adjustment of age-standardized predictions of incidence rates.

Regarding the analysis of CRC data, a total of 179,286 incident CRC cases (12% of the
CNCR records) were registered in the CNCR in the period 1982-2008. Data on cases
diagnosed in 1977-1981 were excluded due to the lack of a classification system for clinical
stages. Moreover, Only clinically relevant cancer records entered the modelling procedures.
The epidemiological records on patients diagnosed by death certificate only or at autopsy
were excluded from the analysis. Finally, 160,017 incident cases were considered for the
analysis. Four age categories were considered in the modelling: 0-49 years, 50-64 years, 65-
79 years and 80+ years; as well as three categories for the disease extent: clinical stages I and
II, representing localised CRC, clinical stage III, representing regionally advanced disease,
and clinical stage IV, representing metastatic disease. Colorectal cancers diagnosed in stage I
or II were merged prior to analyses due to changes in the TNM classification system
(Hermanek and Sobin, 1992). Moreover, cases with missing information on stage (denoted
here as X) were also considered for the model, as they represent an indispensable mass of
patients that needs to be accounted for in the health care system.

2.2. The model

The model was described in detail elsewhere (Pavlik et al., 2012). It comes from the model
of period prevalence defined as the proportion of patients with present or past diagnosis of
cancer alive in a population in a certain year. The modelling process has two steps. In the
first step, overall number of living cancer patients irrespective of the anti-tumour therapy
applied is identified. The prediction combines the number of newly diagnosed patients and
the number of patients who were diagnosed previously and lived at the year of interest. In the
second step, number of patients probably treated in a given year due to a primary disease or
due to a recurrence of the primary disease is estimated. As mentioned previously, the model
is derived in a stage-specific manner as this stratification is necessary in a case of financial
planning since the treatment costs and other resources needed are highly associated with the
cancer stage. Moreover, several scenarios can be adopted to cover the plausible development
of the incidence and survival rates, and the probability of an anti-tumour therapy initiation.

Considering the extent of cancer, S, as the main stratification factor for the estimation of
cancer prevalence, we will categorise it into three groups according to clinical stages defined
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by the TNM classification system: s = | + II for clinical stages I and II (representing localised
disease); s = III for clinical stage III (representing regionally advanced disease); and s = IV
for clinical stage IV (representing metastasized disease). The stage-specific prevalence,
Ps(y), can be then expressed as follows:

P.(y)=D P () =D > I, (y-i,a)S(i,a), (n)

a=l1 i=0

where a is a categorical age cohort variable of m categories and Ps,(y) denotes the
prevalence of patients ever diagnosed at ath age category and stage category S alive in
calendar year y. The Ps4(y) can be further formulated as the convolution of incidence and
survival functions: ls(y — i, a) and Sg(i, @) are the age and stage-specific incidence and
survival functions, respectively, and n is the number of annual incidence figures available for
the computation.

Equation (1) can be easily split into two terms (assuming newly diagnosed patients being
prevalent in the year of interest and thus having S¢(0, &) = 1) as follows:

Pa(y) =Z|S(Y—i,a)ss(i,a)= |s(y,a)+Z|s(y—i,a)35(i,a), ®)

First term on the right-hand side of equation (2) represents the newly diagnosed patients
whereas the second one represents patients diagnosed in the past and alive in the given year.
Correcting the first term of (2) for the probability of being untreated with anti-tumour
treatment due to poor health condition or other objective reasons (e.g. patient’s refusal) and
simultaneously correcting the second term of (2) in a way that only patients with the
recurrence of the disease in a good health condition allowing the anti-tumour treatment are
considered, the prevalence of patients receiving active anti-tumour therapy, denoted as
P*sa(y), can be derived as follows:

Poa(¥) = L (v, @)5,(y,) + D1, (y —i,2)S, (i, )R, (i,2)5,(y.a), 3)

i=1

where J(y, a) is the stage- and age-specific probability of being treated with an anti-tumour
treatment in the year of interest and R(i, @) is a function that describes the risk of suffering
from cancer recurrence after surviving i years from diagnosis.

The cancer recurrence function, Rs(i), need to be further specified using the following
consideration: each patient diagnosed in stage S can suffer in time from two forms of cancer
recurrence, either non-terminal, actually not leading to death in the year y, denoted as Ry (i),
or terminal, leading to death in the year y, denoted as R¢’(i). The stratification further
determines the patient’s treatment course. In the former case, the patient is assumed to be
treated in a similar way as at the time of primary diagnosis, i.e. the patient stays in the
prevalence pool of the particular stage S. In the second case, the patient is assumed to be
treated for generalized (or metastasized) disease, i.e. the patient moves from the prevalence
of stage I+II or III to the prevalence of stage I'V.

Splitting the Ry(i) term in equation (3) and moving the patients suffering from terminal
cancer recurrence to the prevalence of stage I'V led to the following formulation of the stage-
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specific prevalence of patients requiring active anti-tumour therapy (for simplicity, index a
representing the age category is omitted):

PS(Y) = 1,(0)S(Y) + D1 (y =S (DR ()5, (v); s=1+11111X, )

PL () = Iy (N3 (N + D 1 (y =S DR () + R (DB (1)

2 Zn:'s(y—i)Ss(i)Rf(i)51v(Y)-

s=1+11L11LX =1

®)

2.3. Specifying colorectal cancer incidence, survival, and recurrence

In the proposed model, the age-drift Poisson regression model was applied for estimating
CRC incidence employing two different link functions: the identity link function was used to
model increasing incidence trends, whereas the logarithmic link was utilised to model
decreasing trends (Dyba and Hakulinen, 2000). Two scenarios can be considered for the
estimation of incidence rates. First, CRC incidence rates can be considered fixed at the
values observed in 2008; second, the age, period and cohort model can be applied for the
estimation of future counts (Bray and Moller, 2006).

The stage-specific survival rates were estimated using a method based on the moving
window principle that employs the standard life-table method (Marubini and Valsecchi,
2004). In this procedure, the survival rates are estimated successively, using the cohort
analysis of patients diagnosed in overlapping 5-year time intervals. To ensure validity,
calculation of X-year survival rates is only performed on cohorts in whom the X-year survival
rate can be reliably estimated, and were diagnosed as recently as possible (Dusek et al.,
2009). Two scenarios can be adopted for survival estimates as well. In the first scenario, the
survival rates can be assumed to improve from 2008 to 2015 in the same manner as observed
in the CNCR data from the period of 2004-2008. In the second scenario, survival rates
needed for calculating the 2009-2015 prevalence are fixed at the most recent values, namely
the survival rates available in 2008.

The records of cancer recurrence rates are not directly available on the population level in the
Czech Republic. For this reason, surrogate parameters were used to estimate the cancer
recurrence rates. Regarding non-terminal cancer recurrence rates, R (i), these were estimated
using the information on the patient’s health status and non-symptomatic anti-tumour therapy
applied after the first year following diagnosis (first year after diagnosis is assumed to
correspond to the initial treatment phase). However, as the R¢'(i) function refers only to non-
terminal cancer recurrence, there was an additional condition needed and that was that the
patients had to survive up to the end of the particular year of interest, i.e. the cancer
recurrence had not to be terminal in a given year.

As for terminal cancer recurrence, the R,*(i) function was estimated using the information on
cancer as the main cause of death in the CNCR. The approach is based on the assumption
that nobody can die from cancer, with cancer being the main reason of death, without passing
through the phase of generalized disease. Therefore, the Rs’(i) function represents the excess
mortality of the cancer and can be thus specified using either the relative survival function or
the underlying excess hazard rate (Dickman et al., 2004).
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As the last factor needed for the model, the proportion of patients treated with anti-tumour
therapy reflecting the patients’ health status were derived from the CNCR population data.
Like in the case of CRC incidence and survival rates, two scenarios can be considered for the
proportion of the treated CRC patients. First, this proportion can be regarded fixed and
estimated in a stage-specific manner from the period 2004-2008. Second, the values
observed from the CNCR can be extrapolated forward in time using a logistic regression
model.

For the sake of completeness, the eight models considered in this paper that are defined by
combination of two scenarios for the estimation of incidence rates (fixed and modelled,
respectively), two scenarios for the estimation of survival rates (constant and improving,
respectively), and two scenarios for the proportion of treated patients (fixed and modelled,
respectively) are summarised in Table 1.All computations were performed using Stata 10.1
software.

Table 1. Description of the eight scenarios used to estimate the number of colorectal cancer
patients treated with anti-tumour therapy in 2015 in the Czech Republic

Survival rates

Proportion of treated (for the period 2009-2015)

Incidence rates

patients f : Survival rates are Survival rates are assumed
or the period 2009-2015
(for the year 2015) ( P ) considered fixed at the to improve in the same
most recent values, i.e. manner as observed in the
survival rates in 2008 period 2004-2008
Incidence rates are
considered fixed at the Scenario 1 Scenario 2
Proportion is regarded values observed in 2008
fixed in time and estimated ~| Gqen el
from the period 2004-2008 1, delled in time using the . )
. . Scenario 3 Scenario 4
age-drift Poisson
regression model
Incidence rates are
Proportion observed in the considered fixed at the Scenario 5 Scenario 6
period 2004-2008 is values observed in 2008
extrapolated forward in Incidence rates are
time using a logistic g ;
modelled in time using the Scenario 7 Scenario 8

regression model age-drift Poisson

regression model
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3. Results

The results were described in detail elsewhere (Pavlik et al., 2012). Applying the selected
scenarios, the 2015 CRC prevalence of patients primarily diagnosed in stage I or II is
estimated as ranging between 338.8 and 389.8 per 100,000 people, while the prevalence of
patients diagnosed in stage III is estimated as ranging between 114.1 and 150.2 per 100,000
people, and the prevalence of patients diagnosed in stage IV ranging between 50.7 and 58.1
per 100,000 people. The prevalence of CRC patients with missing information on stage in
CNCR is estimated as ranging between 26.3 and 33.9 per 100,000 people. As expected, the
biggest discrepancy between the scenarios can be seen for the merged stages I[+1I where the
improvements in survival are manifested the most. In total, between 529.9 and 632.0 CRC
patients per 100,000 people are estimated to be prevalent in 2015. The model thus predicts an
increase in CRC prevalence from 13% to 30% in comparison with the situation in 2008. This
increase underlines the seriousness of the CRC burden in the Czech Republic.

Non-terminal cancer recurrence rates Terminal cancer recurrence rates
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= ° ——— Stage lll o ° ——— Stage lll
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Figure 1. Stage-specific estimates of non-terminal and terminal recurrence rates in first ten
years after primary diagnosis of colorectal cancer; the estimates correspond to the recent time
period, 1995-2008

Figure 1 shows the estimated stage-specific rates of non-terminal and terminal cancer
recurrence, respectively; in the ten years following the first completed year after diagnosis
(first year after diagnosis is considered to correspond to primary therapy). The estimates
corresponding to the most recent time period, 1995-2008, are shown. We can see the risk of
non-terminal cancer recurrence gradually decreasing in the first three years and reaching the
3% level in all stages afterwards. On the contrary, the pattern of terminal recurrence rates
varies with clinical stage up to five years after diagnosis; in stages I + II, the recurrence rates
are consistently below 7%, conveying a good perspective of patients diagnosed with less
advanced disease. In stage III, the terminal recurrence rate shows a stable but very slow
decrease in time. The terminal recurrence rate for stage IV reveals a very high risk of dying
from CRC exceeding even 60% after the first year following diagnosis. The risk reaches the
level comparable to other stages after 5-6 years following the diagnosis. The terminal
recurrence rate of the patients with missing information on stage is located in the middle of
the other stage-specific profiles (Figure 1). It documents the fact that patients with missing
information on stage represent a mixture of patients of all stages.
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The numbers of patients requiring active anti-tumour therapy for the CRC in the Czech
Republic in 2015 estimated according to eight considered scenarios are given in Table 2. For
each scenario, the first three columns represent the individual components of the proposed
model: the estimated number of newly diagnosed and treated patients, the estimated number
of patients treated for non-terminal cancer recurrence, and the estimated number of patients
treated for terminal cancer recurrence, respectively. Then, the sums with respect to the stage
at the diagnosis are shown (column 4).

In total, from 10,074 to 11,440 CRC patients are predicted for anti-tumour therapy
administration in the Czech Republic in 2015 according to the eight scenarios considered for
incidence and survival rates and the probability of anti-tumour therapy administration. When
regarding the stage at diagnosis as the primary stratification factor, 4,595 to 4,828 patients
(41-47% of all CRC patients) primarily diagnosed in stage I or II; 2,679 to 3,613 patients
(27-32%) primarily diagnosed in stage III; and 2,366 to 2,969 patients (23-27%) primarily
diagnosed in stage IV are estimated to be treated in 2015, respectively. Regarding patients
with missing information on stage, 134 to 335 of them (1-3%) are predicted for anti-tumour
therapy in 2015.

4. Discussion

Modelling the prevalence of the CRC patients requiring active anti-tumour therapy is an
important issue; especially in countries like the Czech Republic which ranks among
countries with the highest cancer load worldwide (Ferlay et al., 2010). The stage-specific
modelling is complicated and requires a comprehensive approach, since the stage at the time
of diagnosis need not necessarily coincide with the disease extent several years afterwards.
The disease extent should be taken into account in the modelling process at all time points
because the clinical stage is, in regards to patient life-expectation and anticipated financial
costs, even more important than age at diagnosis (Clerc et al., 2008). That is why we attempt
to propose a comprehensive statistical method here that may provide such estimates in a
stage-specific manner utilizing solely the population-based cancer registry data.

In accordance with other epidemiological studies, for example Gail et al. (1999), four
extreme scenarios regarding progress in incidence and survival rates were implemented to
model the CRC prevalence in this study. The incidence rates were either assumed fixed at the
2008 level or modelled using the age, period, and cohort model. As for the survival rates,
they were either assumed to improve from 2008 to 2015 at the same rate as observed in the
period of 2004-2008 or fixed at the most recent values, i.e. the survival rates available in
2008.

The estimated one-year prevalence rates are not directly comparable with the international
data coming from comparative studies such as Engholm et al. (2010), since these studies
focus primarily on the point prevalence. However, at least a crude comparison shows that the
prevalence of CRC in the Czech Republic gradually reaches the situation in the Western and
Northern European countries. A very high incidence rate and the already mentioned
successively improving survival rates can be regarded as the two main drivers.
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Table 2. Stage-specific estimates of prevalence of patients requiring active anti-tumour
therapy for colorectal cancer in the Czech Republic in 2015 according to the eight scenarios
—part 1.

Scenario 1: Constant proportion of treated patients;
Constant incidence rate; Constant survival rates

S.tage at Newly Qiagnosed Non-terminal cancer Terminal Total
diagnosis patients recurrence cancer recurrence
Stage I+II 3,650 565 479 4,694
Stage 111 1,783 355 541 2,679
Stage IV 1,419 181 766 2,366
Missing 220 16 99 335
All cases 7,072 1,117 1,885 10,074
Scenario 3: Constant proportion of treated patients;
Modelled incidence rate; Constant survival rates
S'tage at' Newly Qiagnosed Non-terminal cancer Terminal Total
diagnosis patients recurrence cancer recurrence
Stage I+II 3,581 547 467 4,595
Stage 1T 2,223 422 632 3,277
Stage IV 1,428 177 761 2,366
Missing 131 10 59 200
All cases 7,363 1,156 1,919 10,438
Scenario 5: Modelled proportion of treated patients;
Constant incidence rate; Constant survival rates
SFage at. Newly Qiagnosed Non-terminal cancer Terminal Total
diagnosis patients recurrence cancer recurrence
Stage I+I1 3,613 560 562 4,735
Stage 11 1,831 362 628 2,821
Stage IV 1,675 206 890 2,771
Missing 122 9 121 252
All cases 7,241 1,137 2,201 10,579
Scenario 7: Modelled proportion of treated patients;
Modelled incidence rate; Constant survival rates
S.tage at Newly Qiagnosed Non-terminal cancer Terminal Total
diagnosis patients recurrence cancer recurrence
Stage I+II 3,542 544 549 4,635
Stage 111 2,285 429 734 3,448
Stage IV 1,697 203 887 2,787
Missing 72 5 71 148
All cases 7,596 1,181 2,241 11,018
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Table 2. Stage-specific estimates of prevalence of patients requiring active anti-tumour
therapy for colorectal cancer in the Czech Republic in 2015 according to the eight scenarios
— part 2.

Scenario 2: Constant proportion of treated patients;
Constant incidence rate; Improving survival rates

S.tage at Newly Qiagnosed Non-terminal cancer Terminal Total
diagnosis patients recurrence cancer recurrence
Stage I+II 3,650 607 524 4,781
Stage 111 1,783 407 625 2,815
Stage IV 1,419 212 898 2,529
Missing 220 13 76 309
All cases 7,072 1,239 2,123 10,434
Scenario 4: Constant proportion of treated patients;
Modelled incidence rate; Improving survival rates
S'tage at' Newly Qiagnosed Non-terminal cancer Terminal Total
diagnosis patients recurrence cancer recurrence
Stage I+II 3,581 589 511 4,681
Stage III 2,223 475 725 3,423
Stage IV 1,428 207 892 2,527
Missing 131 9 47 187
All cases 7,363 1,280 2,175 10,818
Scenario 6: Modelled proportion of treated patients;
Constant incidence rate; Improving survival rates
SFage at. Newly Qiagnosed Non-terminal cancer Terminal Total
diagnosis patients recurrence cancer recurrence
Stage I+I1 3,613 602 613 4,828
Stage III 1,831 415 727 2,973
Stage IV 1,675 241 1,038 2,954
Missing 122 7 92 221
All cases 7,241 1,265 2,470 10,976
Scenario 8: Modelled proportion of treated patients;
Modelled incidence rate; Improving survival rates
S.tage at Newly Qiagnosed Non-terminal cancer Terminal Total
diagnosis patients recurrence cancer recurrence
Stage I+II 3,542 583 599 4,724
Stage 111 2,285 484 844 3,613
Stage IV 1,697 236 1,036 2,969
Missing 72 5 57 134
All cases 7,596 1,308 2,536 11,440
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Two principal types of estimates for the cancer recurrence rates are widely used, either
estimates based on clinical or hospital data (Liang et al., 2007) or estimates coming from
population-based databases (Manfredi et al., 2006). We feel that the estimates coming from
the population-based databases may be more appropriate in this type of modelling, as the
estimates calculated from hospital data can lead to biased results due to non-
representativeness of the underlying set of patients. On the other hand, the precise
information on time of cancer recurrence is barely available in the population-based cancer
registries. In our model, the rationale behind the estimation of functions representing the
non-terminal and terminal cancer recurrence rates, respectively, was to use surrogate
parameters. The terminal form of cancer recurrence was estimated from the information on
cancer as the main cause of death, whereas the non-terminal form was identified from the
information on patient’s vital status and anti-tumour therapy applied during the follow-up
period. Of course, the need for the surrogate information introduces high requirements on the
data quality of the population-based registry.

Considering the most recent changes in CRC epidemiology and care in the Czech Republic,
we feel that the most likely scenario for the year 2015 is the one with stabilised incidence
rates, improving survival rates, and an increasing proportion of treated patients (see Table 2,
scenario 6). The stabilised incidence rates can be expected due to the increase in attendance
at the national organised screening program that has been observed during very recent years
in the Czech Republic (M4jek et al., 2010). In addition, both the improvement in survival
rates and the increasing proportion of treated patients can be attributed to the establishment
of a network of highly specialised Cancer Centres that took place in the Czech Republic in
2006 (Finek et al., 2009), and the introduction of molecular targeted therapy in recent years.

5. Conclusion

A model for the estimation of the number of cancer patients requiring active anti-tumour
therapy in a stage-specific manner utilizing solely the population-based cancer registry data
was proposed in this contribution. In total, eight scenarios concerning progress in incidence
rates, survival rates, and the probability of an anti-tumour therapy administration were
considered for the estimation of the number of potentially treated CRC patients. Based on the
scenarios, the model predicted an increase in CRC prevalence ranging from 13% to 30% in
comparison with the situation in 2008. The model also predicted that the number of
colorectal cancer patients requiring active anti-tumour therapy in the Czech Republic in 2015
ranges from 10,074 to 11,440. Moreover, 3,485 to 4,469 patients will be potentially treated
for the metastatic disease, which accounts for more than one third of all CRC patients.
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Abstract

Percutaneous coronary intervention (PCI) is helpful in treatment and prevention of
ischaemic heart disease (IHD). We compared survival of patients after PCI with
survival of the general Czech population to find out whether PCI patients decease less
or more than are expected. Relative survival, the ratio of the observed and the expected
survival, was used to estimate disease-specific survival. An analysis of the National
Register of Cardiovascular Interventions (NRKI) showed absolute (observed) survival
of 78.4 % patients (81.3 % in patients with survival > 30 days) and relative survival of
93.8 % patients (96.6 % in patients with survival > 30 days) at 5 years of follow-up.
Relative survival was higher in men and patients > 75 years.
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1. Introduction

In 2010, ischaemic heart disease (IHD) caused 25 178 deaths (23.6 % of all deaths that year)
in the Czech Republic (Eurostat, 2013). Percutaneous coronary intervention (PCI) is one of
the ways how to treat IHD. PCI is a non-surgical procedure used to widen narrowed coronary
arteries. A deflated balloon on a catheter is placed into the narrowed artery. After that, the
balloon is inflated to open the artery and a stent is inserted at the site of blockage to keep the
artery permanently open.

We focused on probability estimations of relative survival of patients after PCI to gain the
information whether PCI gives an advantage in a future patient’s survival. Relative survival
is the ratio of the observed and the expected survival rates which gives an estimate of
survival due to the disease of interest without the need of information on individual cause of
death. To obtain the relative survival we compared the survival rate in PCI patients with that
in the total Czech population, adjusted for sex, age and calendar time.

2. Methods
2.1 Patients

The National Register of Cardiovascular Interventions (NRKI) is the analysis-based data
source which contains records of cardiovascular interventions performed in the Czech
Republic from January 2005 to the end of September 2011. During this time period, 97,844
patients underwent PCI. From 120,419 records, we excluded repeated interventions and
enrolled 86,386 patients in which their first PCI was performed in the considered time frame.
This study group consisted of 58,881 men (68.2 %; mean age 63 years) and 27,505 women
(32.8 %; mean age 70 years). Patients were divided into three age groups < 60, 60-74 and

> 75 (Table 1). For the purpose of the long-term survival analysis, we considered only
83,262 patients who were alive after 30 days from the intervention.
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Table 1. Clinical characteristics of 86,386 patients

Characteristics No. or mean = SD % or range
Age 65.6 +11.4 22-100
Sex
Male 58,881 68.2
Female 27,505 318
Age group
<60 26,469 30.7
60-74 38,042 440
>75 21,875 25.3

2.2 Statistical methods

Mortality related to IHD was estimated by computing the relative survival rate using the
Hakulinen method, as the ratio of the observed to the expected rate. The observed survival
rate for all causes of death was calculated by the Kaplan-Meier method based on the data of
the NRKI. The expected survival rate was calculated from life tables which are freely
available on the website of the Czech Statistical Office (CZSO, 2012). The log-rank test was
used to assess differences between survival curves. Traditional age standardization was
performed with weightings derived from the initial age structure of the study group.

3. Results

3.1 Observed and relative survival

Overall, 3,124 patients died within the first 30 days following their PCI (3.6 %); 10,388 other
patients deceased during following 5 years. Figure 1 shows the observed survival (OS) and
relative survival (RS) in men and women alive on day 31. OS was higher in men (82.7 % vs.
78.3 %), as well as RS (97.7 % vs. 94.2 %). In average, women were much older than men;
thus age standardization would be appropriate. Age-standardized OS was higher in women
(81.9 % vs. 80.4 %), age-standardized RS was still higher in men (98.5 % vs. 94.2 %) (Table
2).

This study showed significantly reduced relative long-term survival in women compared to
men of all age groups. Patients older than 74 years were surviving better than younger ones
(Figure 2). In men older than 75 years, the relative survival rate increased even to 103.5 %
(Table 2).

Table 2. Crude and age-adjusted 5-year OS and RS rates of patient with survival > 30 days

Observed survival (%) Relative survival (%)

Age group Men Women All Men Women All
<60 925 934 92.6 97,2 95.6 96.9

60-74 82.3 83.2 82.6 96.5 91.2 94.7
>75 62.5 65.6 64.0 103.5 97,9 100,6

Crude 82.7 78.3 81.3 97.7 94,2 96.6
Age-adjusted 80.4 81.9 81.0 98.5 94.2 96.9
Difference (-2.3) (+3.6) (-0.3) (+0.8) (+0.0) (+0.3)
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3.2 Limitations of the study

In calculations of the expected survival in the study group it has to be assumed that survival
in a general population is unaffected by deaths related to the disease of interest. If the
prevalence of that condition in the general population is low enough, then this will have little
impact (Nelson et al., 2008). Unfortunately, this is not the case because IHD is definitely not
the rare disease, especially in the advanced age. Furthermore, patients indicated for PCI were
selected with respect to their overall medical condition. Both reasons could have affected the
calculated relative survival rates to the better results.
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Figure 1. OS and RS curves following
a first PCI by sex in patients with survival
> 30 days

Figure 2. RS curves following a first PCI
by age group and sex in patients with
survival > 30 days

4. Conclusion

Age-standardized OS was higher in women while age-standardized RS was higher in men. It
means that women after PCI deceased less than men but often in a consequence of IHD.
Relative survival was lower in women and in patients below 75 years of age. This was most
likely due to acceptance of patients with more comorbidity among the younger patients
and/or the high prevalence of IHD in the general population.
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Abstract

In this paper we study the equine stress test ECG. We are using the time-frequency
analysis in order to examine the changes in frequencies throughout the time interval of
the experiment. The goal of this study is to describe the fitness state of the subjects
according to information obtainable from ECG signals. For this purpose we have
extracted certain features from the signal, namely power and Poincare plot descriptors.
Cluster analysis is then used to create groups of features’ values in order to interpret the
heart’s reaction to the stressing. We found, that it is possible to associate these groups
with the testing protocol and thereby describe the state of stress.
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1. Introduction

The aim of this study is to use the equine stress test electrocardiogram (ECG) to create a
system of fitness evaluation. The system is based on the time frequency analysis of signals
and comparison among subjects. We extracted features from the time-frequency transform of
the signal and these we analysed. The idea of the system was to associate the vectors of
descriptors’ values at certain frequency bands and time windows with the stress test protocol.
These vectors were therefore classified by means of clustering.

Through this system we expect to have easier capturing of abnormalities either in health or in
fitness of the subject than the plain time-frequency transformation result is able to provide.
This might be very useful for quick and easy identification of problematic horses, or for
example potential diseases of heart or any other that has effect on performance. Another use
might also be the easy comparison of subjects leading to quick detection of heart
adaptability, which is a key factor of performance. Therefore the possibility of using this
system as a measure of racing ability might exist.

2. Dataset

The dataset includes complete equine ECG signals from fourteen subjects that were screened
during a stress test. All these tests were done using a treadmill at a veterinary clinic and were
supervised by veterinary surgeons.
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3. Frequency domain analysis

As our system is based on time-frequency analysis of the signal, we needed to determine the
length of the time window we would use. The frequency analysis helped us to decide this and
also discovered that the highest frequency involved in the signal was much lower than
original sampling rate. Therefore, we decimated the sampling frequency.

4. Time-frequency analysis

From all the time-frequency transform methods we chose to use the Fourier transform based
short time Fourier transform (STFT). We chose to work with the hamming window and to
overlap each successive window.

5. Feature extraction

The result of the STFT was only a step for us to be able to extract some features that would
describe the signal. For that purpose we decided to deal with a simpler image of the power
averages as it is much more suitable for classification and clustering. Therefore we divided
the time axis into intervals of the 60 seconds length and the frequency axis into bands. It is
also fact, that we only use frequency up to the value of 26.25Hz in here, since higher
frequencies showed no visible amplitudes and were therefore considered as unimportant.

5.1. Power features

For each sub-matrix created by the bands we calculated the power. Power of a signal is
defined as sum of the second powers of al+l the values divided by the number of these
values. In order to get the same scale among all subjects we normalized the power values.

The next step was cluster analysis. We divided all the vectors of normalized power values for
the specific frequency bands among subjects into clusters. We were trying to depict the real
amount of stress that the subject felt during a particular minute. For this analysis we used the
k-means clustering with k equal to three as this number turned out to be the best after few
trials.

Clustered powers Aragon

Frequency band number

Time window number

Figure 1. Visualisation of the power values extracted in specific time and frequency bands
and its clustering for Aragorn
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Figure 1 shows a sample visualisation of the power analysis result along with the clustering
result. The upper part of Figure 1 is a result of power analysis. On the x axis there are time
bands; y axis represents the frequency bands. The colour stands for the normalized power
value. The bottom part of this image represents the cluster in which each vector of powers
belongs.

Our image as we can see was not perfect. The stage power changes are very sudden causing
wrong clustering in some cases. Therefore we decided to overlap our time windows.

The first visualisation of all the subjects’ results is presented in Figure 2. The picture is
constructed with an upper part, which represents the power of the signal for time and
frequency windows. The lower part then represents the cluster, into which each vector of
powers in specific frequency bands for a time window belongs. White lines across the whole
picture represent the border between two horses. The x axis represents the time window
number, which cumulates with the subjects.
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Figure 2. Visualisation of the power values extracted in specific frequency bands and
overlapping time intervals and its clustering for all subjects

5.2. Poincare Features

Next feature we extracted from our signal represents the geometric domain. We used these
descriptors of the Poincare plot: the standard deviation in the direction of the identity line
(called SD2) and the standard deviation in the direction orthogonal to the identity line (called
SD1) (Bravi et al., 2011). Poincare plot represents the display of a generic sample n of the
time series and as a function of the sample n-1 (Linn et al., 2010). As stated, one creates a
Poincare plot from a signal in time domain. As we did a great analysis in the frequency
plane, we can easily filter the signal, so that we would use only the frequencies considered to
carry the useful information. We decided these frequencies to originate in the first five
frequency bands. That means in this place we use only frequencies up to 6.75 Hz. As we had
a matrix of these measures for all horses, we again needed to apply normalization in order to
have the same scale.

Figure 3 shows the resulting clustered normalized Poincare descriptors for all horses. The
upper part shows the dynamics of the descriptor values in time and the lower part shows the
cluster into which each time window belongs. Subjects are separated from each other by thin
red lines. The x axis represents the time window number, which cumulates with the subjects.
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Clustered Poincare descriptors all subjects
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Figure 3. Visualisation of the Poincare descriptors’ values extracted in specific time and
frequency bands and its one-stage three-means clustering for all subjects

5.3. Combined Feature visualisation

Now, as we have these three clusters defined by the two Poincare descriptors, we can add
them to the clustered power image to capture similarities.
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Figure 4. Visualisation of the power values extracted in specific frequency bands and
overlapping time intervals and its one-stage three-means clustering with the result of the
clustering of the Poincare descriptors values for all subjects

Figure 4 shows the complete results we accomplished for overlapping time windows. The
upper part represents the normalized power of the signal; the lower part consists of two
cluster analyses. The upper cluster analysis represents the powers cluster; the lower cluster
analysis represents the Poincare descriptors cluster. Subjects are always separated with a thin
white line. The x axis represents the time window number, which cumulates with the

subjects.
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6. Discussion

This study has several limitations. Firstly, the dataset is not large enough to provide statistics
of differences among subjects and by that to prove our system provides contributive results.
Secondly, only few features were extracted to describe the ECG dynamics. A possible
expansion of this work is the use of other features, possibly describing different domains,
such as the invariant, or the statistic. Also, a combination of used, or other features might
describe the ECG variability better than each separately. Additionally, one could compare to
our assumptions about the fitness state of horses based on the ECG features to some actual
physiological measures, such as lactate rates during the experiment. Other comparison might
be done with the handicap information of the subjects.

7. Conclusion

In this study we analysed the equine ECG signals recorded during a stress test. We created a
system helping us to find similarities and differences in responses to the different phases of
stressing.
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Abstract

This work aims to introduce and apply the methodical background for statistical
evaluation of recurrent events in chronic myeloid leukaemia. A non-parametric
approach is adopted that is based on standard methods of survival analysis and analysis
of competing risks. Moreover, an approach based on the so-called multi-state models
can be used. In the application on real data sets, the results of analyses of multiple
remission periods in patients receiving imatinib for chronic myeloid leukaemia are
presented.
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1. Introduction

In many clinical studies in which death is not the event of interest, subjects may experience
the so-called recurrent event, i.e., a pre-defined event that may occur repeatedly several times
during the follow-up period. As an example of recurrent event data, multiple periods of
relapses or remissions in chronic myeloid leukaemia (CML), rheumatoid arthritis, breast
cancer, or re-hospitalizations of patients after recurrent heart attacks or vascular brain strokes
can be mentioned. The aim of this work is to present and apply estimates of the so-called
current survival measures in CML patients.

2. Methods

Non-parametric statistical methods were used for estimating two principal characteristics of
the current CML treatment: the probability of being alive and leukaemia-free in time after
CML therapy initiation, denoted as the current cumulative incidence of leukaemia-free
patients (CCI); and the probability that a patient is alive and in any leukaemia-free period in
time after achieving the first leukaemia-free period on the CML treatment, denoted as the
current leukaemia-free survival (CLFS). Being leukaemia-free was defined as being in the
complete cytogenetic remission (CCgR), which is defined as the complete eradication of
karyotypically apparent Philadelphia chromosome positive metaphases.

The CCI can be written using the common cumulative incidence functions corresponding to
the achievements of CCgR, li(t), losses of CCgR, I;"(t), or death after ith achievement of
CCgR, ;" (t), which can be estimated using the standard Aalen-Johansen estimator (Marubini
and Valsecchi, 2004):
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Moreover, the CLFS can be written using the survival functions, where the event of interest
is death in the ith CCgR or ith loss of CCgR, S; (), or ith achievement of CCgR or death
prior it, Si(t). These survival functions can be easily derived with the standard Kaplan-Meier
estimator (Kaplan and Meier, 1958):

CLES(D) = S{(0) + Y [5/(®) = S,(0)]. @)
i=2

The methods for estimating CCl and CLFS curves were described in more details elsewhere
(Pavlik et al., 2011). Moreover, the current survival measures were compared with the
common ways of patient outcome assessment, common leukaemia-free survival (LFS) and
cumulative incidence (Cl), which are, however, not well suited for quantification of CML
treatment outcomes, because these measures cannot account for multiple disease remissions
that can be achieved using sequential therapy in CML. R software package currentSurvival
was used for the estimation.

3. Results

In total, 723 Czech CML patients in chronic phase, who received first-line imatinib between
July 2003 and December 2011 and who were registered in the Czech databases CAMELIA
(http://www.camelia.registry) and INFINITY (http://www.leukemia-cell.org/en/databaze/),
were used for the analysis.

In Figure 1, the left side graph represents the resulting estimates of the common CI and the
CCI curve as well as the 95% point-wise bootstrap confidence intervals. Furthermore, the
right side graph shows the resulting estimates of the CLFS and the common LFS curves.
These estimates are also accompanied with the 95% point-wise bootstrap confidence
intervals.
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Figure 1. CCI, CI (left) CLFS, and LFS (right) estimates for 723 Czech CML patients in
chronic phase, who received the first-line imatinib between July 2003 and December 2011
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Regarding all 723 patients, the estimated CCl at 3 and 5 years after starting imatinib therapy
was 74.4% (95% CI: 70.3%-78.0%) and 73.8% (95% CI: 68.4%-79.7%), respectively. On
the other hand, the common Cl at 3 and 5 years after starting imatinib was estimated as
83.5% (95% CI: 80.7%—-85.9%) and 87.4% (95% CI: 84.8%-89.6%), respectively. Thus, the
estimated difference between the CCI and Cl curves reached 9.1% and 13.6% at 3 and 5
years after starting imatinib, respectively.

Only 553 patients (76.5%) who achieved at least one CCgR were available for the CLFS
calculation. The estimated CLFS at 3 and 5 years after achieving the first CCgR was 88.0%
(95% CI: 84.8%-90.9%) and 88.2% (95% CI: 83.8%-93.3%), respectively. The LFS was
estimated as 76.2% (95% CI: 72.0%-80.3%) and 69.1% (95% CI: 64.4%-74.8%) at 3 and 5
years after achieving the first CCgR, respectively. Therefore, at 3 and 5 years after the
achievement of the first CCgR, the difference between the CLFS and LFS estimates reached
11.8% and 19.1%, respectively.

4. Conclusions

The common CI overestimates the probability of being alive and in CCgR after starting first-
line imatinib therapy, whereas the common LFS underestimates the probability of being alive
and in CCgR after the achievement of first CCgR on imatinib. Thus, both current survival
measures, the CCl and CLFS, more reliably illustrate a CML patient’s disease status in time
because they account for multiple leukaemia-free periods during the treatment course.
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Abstract

Acute heart failure is one of the most common causes of death in the developed
countries. It is a condition with high risk of hospitalization mortality and mortality in
medium time. There are many studies that analyzed mortality risk factors, but only one
study, the COACH study, analyzed the risk factors for rehospitalization. Individual
rehospitalizations are expensive and reduce the quality of life. AHEAD database was
used as a data source, namely a consecutive subset of 608 patients. For analysis of risk
factors it is necessary to use multistate survival models, which are models with a final
number of states, in which the patients can enter during the follow-up period. Using
multistate survival models we are able to determine which factors affect individual
transitions. Peripheral vascular disease (PVD) was the most important risk factor in
patients, who were not rehospitalized. Patients with PVD had a 3.7 times higher risk of
death than healthy patients. In patients, who were rehospitalized, aortic stenosis was
analyzed as the most important risk factor of death. Individuals with aortic stenosis had
a 3.1 times higher risk of death than others. Aortic stenosis was analyzed as the most
important risk factor for rehospitalization, too. Patients with aortic stenosis had a 1.9
times higher risk of being hospitalized.

Key words
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hazard ratio

1. Introduction — heart failure

Heart failure is a state in which the heart is unable to fulfil its function of pump. This means
that does not go enough blood into the circulatory system. We can distinguish between left
and right heart failure. If left part of the heart is damaged, then it does not draw enough
blood to organs. With right heart failure there is not enough blood in the lungs. Further we
can divide heart failure on acute and chronic. Acute heart failure (AHF) occurs suddenly in a
relatively healthy heart, while we can talk about chronic heart failure, when the failure
recurs.

1.1. Causes of AHF

The most common cause of AHF is cardiomyopathy, which is a summary term for all
damage to the myocardium. The other reasons of heart failure are heart attack, heart
arrhythmias, hypertensive crisis or cardial tamponade.
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1.2. Frequency of AHF

AHF occurs in 0.4-2% of the total population and in the central Europe up to 1.3% of the
local population suffer from this problem (Spinar a Vitovec, 2007). Its frequency increases
with age. Every eleventh individual at age 80-90 years suffers from AHF.

1.3. Prognosis after AHF

Despite progress in treatment, prognosis for patients AHF is poor. This problem is caused by
the fact that diagnosis and treatment of acute heart failure are very medically and
economically demanding. About 70% of patients die within 5 years from heart failure
(Postmus et al., 2011), of which 25% of individuals die within the first year. AHF influences
other rehospitalization from cardiovascular causes. Around 45% of patients hospitalized with
heart failure are rehospitalized during the 12 months and the risk of death then increases up
to 60%.

2. Methods
2.1. Statistical methods

Survival analysis is a set of the statistical methods, by which we can analyze the time to
occurrence of observed events. The analysis is characterized by two functions — survival
function and risk function.

The Cox regression model is a statistical method, by which we can determine the relationship
between patient’s survival and the explanatory variables.

The hazard ratio (HR) for the two groups (e.g., diabetic and non-diabetic) provides
information on how many times one group has a higher risk of occurrence of the event than
the other one.

2.2. Patients

Data source is the AHEAD database, which was established in 2006 and was terminated in
2012 with more than 8,600 patient records after AHF. Analysis of risk factors was performed
only on a subset of 608 consecutive patients from the University Hospital Brno. Men slightly
prevailed in this cohort (53%). The average age of the dataset was 72.1 years, with 61.2% of
subjects older than 70 years. Representation of other factors, which were analyzed as risk
factors in individual studies, is shown in Table 1.

3. Results

2.1. Risk factors of mortality

Of all 608 patients, 487 were not rehospitalized. Of these patients, 219 eventually died. The
most important risk factor for mortality in patients without rehospitalization was peripheral
vascular disease (PVD). Patients with PVVD have a 3.7 times higher risk of death than healthy
individuals (Figure 1). 121 patients were rehospitalized. Of these patients, 104 returned home
and eventually 40 died. The most important risk factor of death in these patients was aortic
stenosis. Individuals with aortic stenosis have a 3.1 times higher risk of death than others
(Figure 2).
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Table 1. Representation of risk factors from studies (n=608)

Number of patients %

Sex
Male 322 53.0
Female 286 47.0
Age > 70 years 372 61.2
Ejection fraction (EF) < 40 281 46.2
Uric Acid (> 420 umol/l for M, 120 g/l for F) 259 429
Diabetes mellitus 249 41.0
Anaemia (Hb < 130 g/l for M, 120 g/l for F) 202 338
Heart attack 195 321
Pulmonary edema 118 194
Hypertensive crisis 55 9.0
Hyperkalemia (K > 5.5 mmol/l) 27 4.4
Renal failure 14 2.3
Hyponatraemia (Na < 130 mmol/l) 26 4.3
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Figure 1. Mortality risk factors in patients without rehospitalisation (n=487)
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Figure 2. Mortality risk factors in patients after 1% rehospitalisation (n=104)

2.2. Risk factors of 1* rehospitalization

Of all 608 patients, 121 were rehospitalized. Aortic stenosis was the most important risk
factor for rehospitalization as well as for death in patients after rehospitalization. Patients
with narrowed aortic valve have a 1.9 times higher risk of being rehospitalized (Figure 3).
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Figure 2. Risk factors for 1% rehospitalization (n=608)

3. Conclusion

It was found that aortic stenosis became a factor increasing the risk of death and
rehospitalization. Patients with mitral regurgitation have an increased risk of death and
rehospitalization, too. Regarding the biochemical and chemical parameters, low value of
creatinine clearance, high uric acid, anemia and hyperkalemia were analyzed as risk factors
for death. Creatinine clearance and uric acid were also demonstrated as the factors increasing
the risk of rehospitalization. Conversely PCI and bypass, surgery solving heart attack, reduce
the risk of death and rehospitalisation.
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