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Foreword 

Computational Biology is a modern field of study at the Faculty of Science 
of Masaryk University (MU). The study programme is guaranteed by the 
Institute of Biostatistics and Analyses (IBA), which provides computationally 
oriented courses within the educational concept of the Faculty of Medicine 
and the Faculty of Science.  

The summer schools on Computational Biology are expected to encourage 
the collaboration among professors, young scientists as well as students of 
computational biology. Students can participate in informal discussions about 
novel methods in their field of study and some of them seize this ideal 
opportunity to the presentation of their own results to the audience. An active 
contribution of advanced students makes a substantial part of the summer 
school´s programme.  

IBA has initiated a yearly tradition of informal summer schools focused on 
various aspects of computational science in biology and biomedicine: 
 
2005 – Computational Biology 
2006 – Predictive Modelling and ICT in Environmental Epidemiology 
2007 – Processing and Analysis of Biodiversity Data: from Genomic 
Diversity to Ecosystem Structure 
2008 – Statistical Methods for Genetic and Molecular Data 
2009 – Analysis of Clinical and Biomedical Data in an Interdisciplinary 
Approach (in Czech] 
2010 – Deterministic and Stochastic Modelling in Biology and Medicine 

 
Main objective of the 7th Summer School on Computational Biology is 

introduction of diversity assessment methodology and its use in various fields 
of biology from genetics to geographical distribution of organisms, as well as 
connection to other disciplines from mathematical background to 
environmental protection management. We hope this specific field of 
application of computational biology will bring some new viewpoints and 
experience for all participants.  

We are also very grateful for the financial support  of the Ministry of 
Education, Youth and Sports of the Czech Republic, project 
CZ.1.07/2.2.00/07.0318, Multidisciplinary Innovation of Study in 
Computational Biology, where this summer school is organized. 

On behalf of the programme and organizing committee, 
 
Brno, August 19, 2011 

Ji�í Jarkovský 
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Evolution of Parasite Diversity: the Importance of Host 
Genetic Variability 

Andrea Šimková, Mária Seifertová 

 
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlá�ská 2, 

61137 Brno 

Abstract. The first part of this contribution is aimed to introduce three 
biogeographical hypotheses of species diversity and to present the study 
analyzing parasite diversity in chub (Squalius cephalus), the cyprinid fish 
species, based on these hypotheses. The importance of host genetic distance 
was shown when testing distance decay hypothesis. The second part of this 
contribution is aimed to introduce coevolutionary hypotheses explaining the 
associations between major histocompatibility complex (MHC) representing an 
important component of host immune system and parasite diversity. The 
models of selection were introduced and the selective pressure acting on MHC 
diversity in chub was analyzed. Finally, the potential associations between 
MHC and parasites were studied based on the prediction of heterozygote 
advantage and rare allele advantage hypotheses.  

Keywords: parasite diversity, biogeography, genetic distance, host-parasite 
coevolution, selection, immune genes 

1   Biogeographical patterns of parasite diversity 

1.1   Introduction 

The diversity and similarity of parasite communities is a result of many determinants 
widely considered in parasite ecology. The present-day composition and biological 
diversity of parasite communities are the result of losses and acquisitions of parasite 
species during the evolutionary history of their hosts [1]. Environmental factors, host 
ecological traits such as diet and body size, and geographical range are also important 
determinants of parasite communities [2]. Recently, several ecological studies have 
emphasized the role of geographical distance between host populations in determining 
the similarity of parasite assemblages (e.g. [3,4,5]).  

Three hypotheses are applicable to the analyses of biogeographical gradients of 
parasite biodiversity: (1) latitudinal gradient, (2) a ‘favourable centre’ model versus 
‘local oasis’ model, and (3) distance decay, i.e. the role of geographical distance 
between host populations in the structure (similarity and dissimilarity) of parasite 
communities.  
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Following general ecological theory regarding increased biodiversity in the tropics, 
the analyses of parasite assemblages of fish in these areas suggest that parasite 
communities exhibit higher diversity in tropical latitudes due to higher evolutionary 
rates [6]. Temperature, that shows a consistent pattern with the latitudinal gradient of 
parasite diversity, is considered a major biogeographical factor influencing parasite 
diversity [1,6]. 

Differences in parasite biodiversity across the host’s geographical range may be 
explained by the ‘favourable centre’ model, which is based on the assumption that 
species abundance is greatest at the centre of the geographical range of the host and 
declines toward the margins. The optimal conditions for survival and reproduction of 
a species are supposed at the centre of species range. This hypothesis was also 
reformulated as ‘abundance optimum’ model based on the assumption that species 
abundance peaks in the locality with the most favourable conditions. When increasing 
distance from this optimal site the environmental conditions for survival and 
reproduction are less favourable and thus, population size declines. The ‘favourable 
centre’ model and ‘abundance optimum’ model predict the unimodal distribution of 
species abundance in space (Fig. 1), whist the multimodal distribution is predicted by 
the ‘local oasis’ model [7] due to changing environmental conditions over space or 
time. 
 

 
Fig. 1. Abundance optimum model based on unimodal distribution of species abundance (A) 
and local oasis model based on multimodal distribution of species abundance (B) 

The third hypothesis represents decay of similarity in species composition with 
distance (‘distance decay’). This decay results from the general prediction that 
biological similarity decreases with increased geographical distance but also other 
processes such as landscape topography and spatial configuration, different dispersal 
of organisms (for instance limited by  geographical barriers), and different ability of 
organisms to survive along climatic and environmental gradient (Fig. 2). Finally, the 
decay in similarity in species composition may be the result of ecological drift, 
random dispersal and random speciation according to a neutral theory of biodiversity 
and biogeography, rather than by environmental heterogeneity. There are many 
empirical studies demonstrating the negative relationships between parasite 
community similarity and geographic distance between host populations (e.g. [3,4,8]). 
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Fig. 2. Schematic representation of eight communities arranged in order of increasing distance. 
The species present in each community are indicated by different symbols. The communities 
with small distance share many species, distant communities share few species.  

1.2 Empirical study of metazoan parasite diversity in freshwater fish to test the 
biogeographical hypotheses of parasite diversity 

The metazoan parasite communities were studied in 15 populations of chub (Squalius 
cephalus) across much of its geographical distribution in Europe [9]. The number of 
parasite species per population varied from 5 to 22. Similarity in parasite communities 
between fish populations was determined using the qualitative Jaccard index on the 
presence/absence matrix or the quantitative Morisita index on abundance data. The 
genetic i.e. phylogenetic distance between host populations were calculated using data 
on cytochrome b. Chub as a common European cyprinid species infected by a wide 
range of metazoan parasites was used as a suitable model species to test three 
biogeographical hypotheses of parasite diversity. 

Concerning the hypothesis of latitudinal gradient hypothesis, it was tested 
separately for each parasite species. Using a meta-analytical approach, only the 
abundance of metarcercariae of Diplostomum sp. (larval stages of Digenea 
parasitizing fish eyes) was significantly correlated with latitude (p=0.007) but no 
parasite abundance was significantly correlated with water temperature (p>0.05). The 
absence of a latitudinal gradient in ectoparasitic gill Monogenea may be explained by 
the fact that higher monogenean species diversity and abundance was recorded in the 
central regions than in the marginal zones of chub distribution documented by this 
study. 

No general support for the ‘abundance optimum’ model was found because the 
majority of correlations were not significant. However, all parasite species exhibited a 
trend of negative correlation between prevalence and/or abundance and geographical 
distance from the locality with maximum prevalence. A significant decrease of 
abundance with an increase of distance from the locality from the most favourable 
locality was found for ectoparasitic monogeneans of chub (monogeneans were the 
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most abundant parasite group, see Fig. 3), but not for any endoparasites. This suggests 
that the pattern of ‘abundance optimum’ may be associated with level of host 
specificity i.e. the pattern may hold for highly specific monogeneans (i.e. parasitizing 
a single host species) because their abundance is not affected by the distribution of 
intermediate and definitive hosts like in endoparasite species. 

 

 
Fig. 3. The proportion of different metazoan groups in the 15 localities studied. Populations are 
presented according to latitude. 

 

Fig. 4. Distance decay of similarity in metazoan parasite communities of chub. When raw 
similarity values are plotter against geographic distance, the negative relationship is observed. 
When similarity values are corrected for genetic distance estimated from cytochrome b 
sequences, the relationship is not observed.
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Using geographical distance is a convenient ecological measure to test ‘distance 
decay’ hypothesis. However, the presence of parasite species is affected by the 
current and historical host movements and therefore the genetic distance between host 
populations could provide a more accurate estimate of host movements than inferred 
from geographical distance. Thus, we looked at both phylogenetic and geographic 
distance between host populations, and found that in a multivariate analysis, host 
phylogenetic distances were the only significant determinant of similarity in parasite 
species composition. After controlling for the influence of phylogenetic distance, no 
relationship between geographic distance and similarity in parasite communities were 
found (Fig. 4). 

2   Coevolutionary relationships between parasite diversity and 
host immune system 

2.1 Introduction 

The capacity of host to control parasite infections is mainly dependent on particular 
immune genes. Among them, the major histocompatibility complex (MHC) is a multi-
gene family controlling immunological self and non-self recognition in vertebrates. 
MHC genes encode cell surface glycoproteins that present foreign peptides and self-
peptides to T lymphocytes, thereby controlling all specific immune response, both cell 
and antibody mediated [10]. MHC genes are under selective constraints that 
contribute to maintaining the remarkable high polymorphism at MHC loci. The 
extensive polymorphism in the MHC genes is especially pronounced in the codons 
encoding the peptide binding regions (PBR) of the MHC molecule. Gene duplication 
and inter- and intra-locus recombination, spatially heterogeneous selective pressures 
and reproductive mechanisms including MHC-based mating preferences, selective 
abortion and 'allele counting' strategy are considered as the possible mechanisms 
maintaining MHC diversity. Nevertheless, 'parasite-driven balancing selection' based 
on the effects of host-parasite co-evolution leading to 'arms races' between the 
immune defense of hosts and the virulence of parasites has been considered as one of 
the main evolutionary mechanisms maintaining a high MHC polymorphism in wild 
populations. Parasite-driven balancing selection is explained by two hypotheses [11-
14]. First one represents the 'frequency-dependent selection' hypothesis or rare-allele 
advantage hypothesis based on the prediction that host genotypes (i.e. frequencies of 
MHC alleles) constantly change with the frequency of adapted and non-adapted 
pathogens. It means that host genotypes with a rare allele have a stronger selective 
advantage and responds better to a new pathogen and therefore they become more 
frequent; but this is followed by a decrease in its fitness as pathogens adapt to infect 
the most common host genotype. Second hypothesis is termed as the 'overdominance 
hypothesis' or heterozygote advantage hypothesis, which is based on the advantage of 
being heterozygotes at MHC genes, which permits to recognize a wider range of 
antigens than in the case of homozygotes. 
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Chub (Squalius cephalus) was used (1) to analyze the role of selection in forming 
the diversity of MHC genes and (2) to investigate the potential coevolution between 
MHC and parasite species at population level. The study was focused on the highly 
polymorphic exon 2 of MHC class IIB which includes PBR sites. Two groups of 
closely linked exon 2 sequences, DAB1-like and DAB3-like (belonging to MHC IIB 
genes), were identified. 

2.2 Testing the positive selection on MHC genes 

The detection of species-specific positively selected sites (PSS) (i.e. sites under 
positive selection) by means of maximum likelihood methods has became the 
common approach in recent MHC studies of natural populations of wild living 
animals. The presence of selection in DAB genes of chub was analyzed using the 
maximum likelihood method in the program CODEML implemented in PAML, 
version 4.3 [15]. The different models with and without selection incorporated were 
used to test for the presence of sites under selection and to identify them. The models 
used the non-synonymous/synonymous rate ratio (� = dN /dS) as an indicator of 
selective pressure on the protein. Simplistically, values of � < 1, = 1, and > 1 means 
negative purifying selection, neutral evolution, and positive selection (balancing 
selection). However, the ratio averaged over all sites is almost never > 1, since 
positive selection is unlikely to affect all sites over prolonged time. Thus, the interest 
has been focused on detecting positive selection that affects only some sites. We 
compared the following models: M0 (one ratio) and M3 (discrete model involving 
eight classes for �) - this test is considered as a test of variable � among sites rather 
than a test of positive selection, M1a (nearly neutral) and M2a (positive selection), 
and M7 (� model which uses beta distribution) and M8 (� and �). Parameters in the 
site models are shown in Table 1. The comparison of M1a and M2a models have 
limitations in the presence of recombination, while the comparison of M7 and M8 
models is robust against the effect of recombination [16]. If alternative models M3, 
M2a and M8 suggest the presence of sites with � > 1, all three tests can be considered 
a test of positive selection [17]. A likelihood ratio test (LRT) statistic (twice the log-
likelihood difference between the two compared models (2�l = 2(lb-la)) compared 
with a �2 distribution with Pb-Pa degrees of freedom) was used to assess the 
significance of the differences between models (la and lb are log-likelihood values and 
Pa and Pb are the number of parameters for each of the models being compared). 
When the LRT indicated that there was a significant difference, the Bayes empirical 
Bayes (BEB) method was used to calculate the posterior probabilities (pP) for site 
classes and to identify sites under selection (the posterior means of � for positively 
selected sites are > 1). BEB is implemented under models M2a and M8 only.  

Using CODEML, maximum likelihood parameters under different codon models 
of variable � across sites in the DAB1 and DAB3 datasets were estimated [18]. The 
LRT statistic comparing the two models shows that the alternative models (M2a, M3 
and M8) fit the data significantly better than simpler models M1a, M0 and M7 (p < 
0.001), which indicates the action of positive selection at specific sites in DAB 
sequences. The variability in selective pressure among sites in the exon 2 and the 
presence of a number of sites under balancing selection (i.e. positively selected sites) 
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is shown in Fig. 5. The comparison of positively selected sites in exon 2 of DAB1-like 
and DAB3-like sequences showed the differences in evolutionary patterns between 
DAB1-like and DAB3-like genes despite their close linkage. This finding suggests 
potential structural and functional differences between DAB1-like and DAB3-like 
genes. 

Table 1. Parameters in the site models (according to Yang [15]) 

Model NSsites #p Parameters 

M0 (one ratio) 0 1 � 

M1a (neutral) 1 2 
p0 (p1 = 1 – p0), 

�0< 1, �1= 1 

M2a (selection) 2 4 
p0, p1 (p2 = 1 – p0 – p1), 

�0< 1, �1= 1, �2> 1 

M3 (discrete) 3 5 
p0, p1 (p2 = 1 – p0 – p1) 

�0, �1, �2 

M7 (beta) 7 2 p, q 

M8 (beta&�) 8 4 
p0 (p1 = 1 – p0), 

p, q, �s> 1 

#p is the number of free parameters in the � distribution. Parameters in parentheses are not 
free and should not be counted: for example, in M1a, p1 is not a free parameter as p1 = 1 – p0. 
In both likelihood ratio tests comparing M1a against M2a and M7 against M8, df = 2. The site 
models are specified using NSsites. 

2.3 Similarity between host populations based on the genetic variability and 
parasites   

The geographically distant populations were more variable in their microsatellites and 
more dissimilar in their parasite composition (Table 2). Concerning MHC diversity, 
populations with dissimilar MHC allelic profiles were geographically distant 
populations with significantly different variability in microsatellites and a dissimilar 
composition of parasite communities. Significant positive correlations were found 
between MHC distance and metazoan parasite similarity based on abundance data 
(Morisita index). However, no significant correlation was found between MHC 
variability measured by amino acid distance and microsatellite distance. Multiple 
regression analysis with backward elimination calculated using a permutation method, 
showed that only geographic distance (b = -0.535, P < 0.001) and microsatellite 
variability (b = -0.241, P = 0.004) had a statistically significant contribution to MHC 
similarity (N = 105, R2 = 0.465, P < 0.001). 
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Fig. 5. Representation of DAB1-like (A) and DAB3-like (B) sequence variants. Approximate 
posterior means of �, calculated as the weighted average of � over the 11 site classes, weighted 
by the posterior probabilities under the random sites model M8 (� and �) are shown. Sites 
picked, representing a target of positive selection at the 99% level, are indicated by black 
circles, and those at the 95% level by gray circles. 

Table 2. Summary of the Mantel test performed in R v. 2.9.1 using 15 chub populations. The 
values of the Spearman correlation coefficient are shown below the diagonal and P - values 
(10,000 permutations) for each pair-wise comparison are shown above the diagonal. Significant 
correlations are shown in italic. 

 A B C D E F 
A: Genetic distance 
(microsatellites)  0.005 0.032 0.001 0.001 0.148 

B: Parasite presence 
(Jaccard index) -0.419  0.009 0.034 0.039 0.077 

C: Parasite abundance 
(Morisita index) -0.273 0.397  0.012 0.043 0.039 

D: Geographic distance  0.578 -0.292 -0.304  0.009 0.409 
E: Presence of MHC 
alleles -0.465 0.288 0.236 -0.353  0.381 

F: Amino acid distance 
(MHC variability) -0.132 0.201 0.204 0.021 0.045  

2.4 MHC diversity: parasite-mediated or neutral selection? 

The ANOVA revealed significant differences in metazoan parasite load between fish 
individuals expressing a different number of DAB alleles. Fish with a higher number 
of DAB alleles (more than 2 alleles) have a significantly higher abundance and species 
richness of metazoan parasites (Fig. 6). GLM analysis using univariate models 
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revealed the significant influence of population effect, ectoparasite abundance and 
species richness, endoparasite abundance and species richness, and microsatellite 
variability on MHC diversity expressed by amino acid distance. However, using 
multivariate models, only the population effect had a significant influence on MHC 
variability (Table 3). Thus, MHC diversity was confounded by the population effect, 
potentially related to specific habitat character and/or linked to population phylogeny. 
Even initially a link between individual MHC diversity and parasitism was found; 
both parasitism and microsatellite variability explained the very low (i.e. non-
significant) proportion of MHC diversity at population level. 

Table 3. Variability sources explaining the individual MHC amino-acid distance (only non zero 
values were included)

Source Variability explained (%) p 
Univariate models   
Population 57.00% <0.001
Brillouin index diversity 0.20% 0.577 
Total parasite abundance (ln) 0.90% 0.210 
Ectoparasite abundance (ln) 5.70% 0.002 
Endoparasite abundance (ln) 8.40% <0.001
Total parasite species (ln) 0.60% 0.309 
Ectoparasite species (ln) 8.60% <0.001
Endoparasite species (ln) 10.70% <0.001
Microsatellite variability 7.90% <0.001
Multivariate models   
Population 57.61% <0.001
Microsatellite variability 1.20% 0.077 
Total parasite species (ln) 0.59% 0.216 
Total parasite abundance (ln) 0.34% 0.348 
Brillouin index diversity 0.17% 0.507 
Whole model 59.90%  
Population 56.35% <0.001
Microsatellite variability 1.66% 0.053 
Ectoparasite abundance (ln) 0.67% 0.218 
Ectoparasite species (ln) 0.02% 0.821 
Whole model 58.70%  
Population 57.31% <0.001
Microsatellite variability 1.12% 0.077 
Endoparasite abundance (ln) 0.75% 0.149 
Endoparasite species (ln) 0.13% 0.550 
Whole model 59.30%  

2.5 Specific associations between MHC alleles and parasite species 

The multivariate co-inertia analysis, COIA [19], is a statistical method applied to 
investigate the relationships between genetic matrix including the presence/absence of 
each MHC allele and parasite matrix including the abundance of each metazoan 
parasite species [20]. The first step of COIA involved the separate analyses of each 
matrix, i.e. the analysis of the genetic matrix using a principal components analysis 
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(PCA) and the analysis of parasite matrix using a correspondence analysis (CA). 
Thereafter, the co-inertia (COIA) analysis of the two matrices was performed. The 
PCA based on the MHC class IIB allele matrix (presence/absence data) revealed that 
the first two axes explained 25.6% of the variance in the data (F1: 14.2%, F2: 11.4%). 
The CA based on the abundance of metazoan parasite species revealed that the first 
two axes explained 31.5% of the total variance in the data (F1: 17.1%, F2: 14.4%). 
MHC alleles and metazoan parasite species exhibited significant covariance in the 
COIA model (global co-inertia = 0.725, P < 0.05). The first two axes of the COIA 
model explained 39% of the variance shared between the MHC and metazoan parasite 
matrices (F1: 21%, F2: 18%). The co-structure of MHC and metazoan parasite 
variables on the COIA factor maps (Fig. 7) indicated four groups of population-
specific alleles separated by the first two axes, i.e. two groups of alleles specific to 
Czech populations, the group of alleles specific to Italian populations and the group of 
alleles specific to Finnish populations (Fig. 7A), and the same four groups of parasite 
species-specific populations (Fig. 7B). Several associations between population 
specific alleles and population specific parasite species were identified along the first 
and second axes (Fig. 7). 

Following COIA analysis, DAB3 alleles were more involved in the parasite-MHC 
allele associations compared to DAB1 alleles. This could suggest that the rare-allele 
advantage as a mechanism of parasite-mediated selection drives the diversity of 
DAB3-like genes in European chub populations. The analyses of structure and 
selection patterns in DAB1-like and DAB3-like genes in chub showed that DAB3-like 
genes are under stronger positive selection compared to DAB1-like genes which 
suggests potential structural and functional differences between two groups of closely 
linked genes (see above). However, the results suggesting the potential associations 
between specific DAB alleles and parasites species should be interpreted carefully. 
These associations could either indicate negative frequency dependent selection 
acting on MHC diversity within four groups of chub populations or alternatively 
imply that the presence of parasites results from specific characteristics of those 
regions (for instance the presence of intermediate hosts or the specific character of the 
habitat) or the biogeographical gradient of parasite distribution. 

 

 
Fig. 6. The relationships between parasite species richness (A – total parasites, B - 
ectoparasites, C- endoparasites) and number of DAB alleles. p - statistical significance is based 
on ANOVA, a,b - homogeneous groups based on Tukey post hoc test
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Fig. 7. Co-inertia analyses of MHC alleles (A) and metazoan parasite species (B) in chub 
populations. Only positively associated variables (i.e. MHC alleles susceptible to metazoan 
parasites) are labelled; population specificity is indicated by different symbols. 
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Abstract. Genetic diversity accumulates over time on the level of DNA 
sequence with accumulation of mutations. It is additionally increased with 
population admixture, and the decrease in genetic diversity is often the first 
indication of detrimental processes affecting populations, such as reduction in 
the number of breeding individuals or breeding of close relatives. Nucleotide 
diversity shows how different the sequences of a given gene are in a population. 
Gene diversity estimates how likely two individuals are to share the same 
sequence of a gene. Number of alleles is the count of different versions of a 
gene with differing sequences, and this is corrected for sample size in 
estimation of allelic richness. Heterozygosity is the average frequency that an 
individual will have two different copies of a gene. 

Keywords: nucleotide diversity, gene diversity, haplotype diversity, allelic 
richness, heterozygosity. 

1   Introduction 

Genetic diversity expresses the amount of genetic variation, which is a background 
for evolutionary processes. It accumulates in time. On the level of DNA sequence, the 
diversity increases with occurrence of mutations and fluctuates based on the size of 
the population. 

Molecule of the DNA is composed of four nucleotide bases, where their 
composition and order define information encoded in the molecule. This information 
changes with time when changes in sequence of nucleotides are introduced with 
mutations. Point mutations affect a single nucleotide base, which might be replaced 
by a different base, or a base might be deleted or inserted. Base replacements are 
called substitutions. Deletions and insertions are referred to by a common term – 
indel. Mutations occur as errors in copying the DNA molecule during the process of 
cell division. They occur in all cells, but in multicellular organisms, only mutations 
that affect DNA in gametes or spores will be transferred to the next generation. Those 
will contribute to the observed genetic diversity of the next generation and will enable 
the reconstruction of the evolutionary process. 

Organisms that share the same sequence of a specific genomic region, a gene or a 
locus, are referred to as sharing the same allele. In case of a haploid genome, in 
gametes, mitochondria or chloroplasts, identical sequences are referred to as the same 
haplotype. 
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Measuring genetic diversity is always a comparison between more than one 
sequences. Changes detected within a group of sequences represent diversity, and 
comparisons between the groups or even between individual sequences are the 
measurements of divergence.  

2   Diversity Indices 

Genetic diversity indices that help describe population structure on DNA sequence 
level include number of differences between sequences, nucleotide diversity, gene 
diversity, and on the level of whole genes or other markers, number of alleles, allelic 
richness and heterozygosity. These indices are then used to model evolutionary 
processes that shape population structure, such as reconstruction of colonization 
pathways, historical demographic changes or signal for selection. 

The number of differences between sequences represents the basic measure of 
genetic distance. As the DNA molecule consists of only four nucleotide bases, 
multiple mutations might accumulate at any given site. The occurrence of multiple 
mutations would then underestimate genetic distance and needs to be corrected using 
an appropriate substitution model. This was addressed in detail at the 4th Summer 
School [1] and it affects predominantly sequence datasets that are expected to contain 
old divergence events. Multiple mutations are very rare in recent history and are 
usually ignored in studying population processes during human history. 

2.1   Nucleotide Diversity - �

Nucleotide diversity is the average proportion of substitutions observed between any 
two randomly chosen sequences within a group of sequences. It is often expressed as 
percent, and for any given population, nucleotide diversity is different for different 
loci. 

It is calculated as the sum of all per site numbers of differences between unique 
pairs of haplotypes in a group of sequences. 

 
� = n/(n – 1) � pipj�ij            ij (1) 

 
where n is the number of sequences, pi and pj are frequencies of haplotype i and j 

in the dataset and �ij is the number of nucleotide differences per site between i and j. 
It shows how different sequences belonging to a group are expected to be (Fig. 1). 
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Fig. 1. Haplotype networks indicating alternative relationships of DNA sequences that would 
attain different nucleotide diversity. Both datasets contain eight unique sequences (circles), but 
the number of differences between i and j, represented by edges is smaller in (a) than in (b). 
The specific values would depend on sequence length, as �ij in formula 1 is a per site number of 
differences between specific sequences. 

2.2   Gene or Haplotype Diversity - h

Gene diversity represents a measure of what proportion of individuals in a group or a 
population share the same haplotype or allele. The higher the gene diversity, the 
greater the chance that two individuals randomly sampled from a population would 
have different sequence of a target gene. 

 
h = 1 - �pi

2 
          i (2) 

 
where pi is the frequency of haplotype i in the dataset. 
Datasets displayed in Fig. 1 would both have h = 1, because each sequence differs 

from all others. The number of differences between sequences is not reflected in this 
index. The gene diversity is dependent on the number of different haplotypes in a 
population, but also on frequency with which the haplotypes occur. Populations where 
a single haplotypes dominates are probably rapidly growing or selective pressure on 
the gene limits genetic variability of the gene in the population, whereas a population 
where haplotypes occur with more evenly distributed frequency were most probably 
stable in numbers in recent history and the gene in question evolves neutrally (Fig. 2). 
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Fig. 2. Haplotype networks indicating alternative population structure with varying frequency 
of specific haplotypes (indicated by numbers in circles). Haplotype diversity in (a) would be h 
= 1 – [(1/10)2 + (8/10)2 + (1/10)2] = 0.34, whereas in (b) h = 1 – [6 * (1/10)2 + (4/10)2] = 0.78. 
Note that � would be smaller in (a) than in (b). 

Nucleotide and haplotype diversity can be calculated from a sequence alignment in 
program DnaSP (http://www.ub.edu/dnasp/). 

2.3   Number of Alleles and Allelic Richness 

In diploid datasets, one individual might inherit a copy of each gene from each parent 
and these copies might differ. The studies that utilize this fact analyze occurrence of 
different alleles with different specific DNA sequence. The data are differentiated on 
the gene or locus level, not the nucleotide level. This means that the number of 
substitutions or indels in the DNA sequence distinguishing each allele is irrelevant. 

Number of alleles is a simple count of different sequences. In laboratory analyses, 
allele sequences are often estimated on the level of an individual. The gene sequence 
would contain ambiguous bases in positions, where the alleles differ. To obtain a 
haplotype, the exact gametic phase of the allele, the ambiguities need to be resolved. 
Experimentally, the gametic phases – or haplotypes, as the gametes are haploid – are 
sequenced from molecular clones of the alleles. From population datasets, gametic 
phases can be reconstructed using a computational algorithm. 

In Fig. 1, both panels contain the same number of different haplotypes. In Fig. 2, 
panel (a) contains 3 haplotypes, whereas panel (b) contains 7. But in these situations, 
all samples, represented by the figure panels, have comparable size. If we would draw 
a random subsample of 3 sequences from each of the datasets, we would 
underestimate the number of alleles in the dataset. In all cases, the true number of 
alleles will be higher than our sample size with the exception of that from Fig. 2a. If 
the sampling was random, we might miss the rare haplotypes even in Fig. 2a. The 
number of discovered alleles would grow with increasing sample size, although not 
indefinitely. The number of alleles needs to be corrected for sample size. The number 
of alleles expected to be found in n individuals, �(n), is modeled by allelic 
accumulation function. 

 
�(n) = �[1 – (1 – �i)n] 

                                                         i (3) 
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where n is the number of individuals in the dataset and �i is the probability that an 
allele is present in an individual i. 

 

 
Fig. 3. The relationship between number of individuals sampled from a population and allelic 
richness. The number of alleles discovered in a population would be higher for larger samples, 
allelic richness then corrects for differences in sample size. 

Allelic richness can be calculated for a dataset that contains a list of individuals 
sampled in a given population for which alleles of a selected marker are known. 
Software FSTAT (http://www2.unil.ch/popgen/softwares/fstat.htm) can be used to 
calculate allelic richness. 

2.4   Heterozygosity – HO, HE

Heterozygosity is a state when an individual has two different alleles of a gene or 
locus. The individual is heterozygous. If an individual has both copies of a gene that 
are identical, they are the same allele, the individual is homozygous. In a population 
where individuals mate randomly, the heterozygots would occur proportionally to the 
frequency of different alleles based on Mendelian inheritance. The observed 
heterozygosity (HO) within a population is then the proportion of individuals that are 
found to be heterozygous for the given locus. Over multiple loci, average observed 
heterozygosity is computed. 

When frequency of observed heterozygots in a population matches that expected 
(HE) from the frequency of alleles, the population is in Hardy-Weinberg equilibrium 
(HWE). For the simplest case, where in total two alleles occur in a population, the 
proportion of heterozygotes expected under HWE would be calculated from the 
frequency of each allele. 

 

p2 + 2pq + q2 = 1 , (4) 

 
where p is the frequency of the first allele and q is the frequency of the second 

allele present in the population. HWE for two alleles in a population is a binomial 
expansion of (p + q)2. For three alleles, HWE would be a trinomial expansion of (p + 
q + r)2 and so on. 
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Deviations from HWE is estimated from Pearson’s �2 test: 
 

�2 = �[(Oi – Ei)2/Ei] 
                     i (5) 

 
where Oi is the observed number of individuals with genotype i, Ei is the expected 

number of individuals with genotype i, and degrees of freedom is the difference 
between number of genotypes and number of alleles. The null hypothesis is that the 
population is in HWE. 

Observed and expected heterozygosity are calculated in FSTAT listed above or in 
Genepop software (http://genepop.curtin.edu.au/). 

3   Case Study 

Genetic diversity naturally increases with time as genetic variability is increased by 
accumulation of novel mutations and populations admix and exchange genetic 
information. Changes in evolutionary history of populations might exacerbate or 
reduce changes in genetic diversity. 

Martínková et al. [2] tested genetic diversity of populations of a small terrestrial 
carnivore, the stoat, on the British Isles. They found that both the nucleotide and 
haplotype diversity of partial sequences of the mitochondrial genome was higher in 
stoats from Ireland than in those from Great Britain. In fact, the Irish stoats exhibited 
genetic diversity comparable to that found in continental Europe. That is not in 
agreement with expectations where both the Irish and British stoats should have 
similar genetic diversity that would be smaller than the diversity found on the 
continent. The authors applied additional analyses and explained the deviation from 
expectation by differences in evolutionary history between different populations. The 
stoats from Ireland represent remnants of an ancient population that was able to 
survive the last glaciation in Ireland, very close to the ice-sheet. Contrary to that, the 
British stoat population is younger and originated from direct immigrants from 
continental Europe. 

Genetic diversity reflects also changes in population structure caused by humans. 
In chamois, a mountain ungulate that lives in large mountain ranges in Europe, 
genetic structure of populations bears signature of historical translocations and 
introductions [3]. Several populations of chamois were introduced to new areas or 
translocated to repopulate regions where the species was overexploited over the last 
century. Those populations have lower allelic richness, heterozygosity and nucleotide 
diversity. Such populations originated from a small number of founders that harbored 
limited genetic variation. It is now reflected in similarly limited genetic diversity. The 
opposite, populations with very high genetic diversity are characterized by consisting 
of individuals of different geographic origin. Distant populations are expected to be 
divergent, and if such individuals are introduced to a single population, they would 
bring divergent haplotypes, increasing the overall genetic diversity of a population. 
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4   Conclusion 

Genetic diversity indices reflect basic genetic structure of a population. Their 
combination provides valuable information about possible heterogeneity of origin of a 
population, its age or a signal that first indicates possible problems associated with 
genetic information such as inbreeding. 
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Abstract. This paper has been prepared to provide a brief educational overview 
of biodiversity data as a subject of different types of studies. The biodiversity is 
defined in all levels of organization of biological systems, from molecular and 
genomic level to ecosystem scale. A special attention is given to the 
methodology of different types of analyses, including the widely-used modeling 
of species-abundance relationships. The analysis of biodiversity is widely 
available in many software packages and hundreds of measures can be used; 
however, it must always be done with a very careful and correct interpretation. 
The so-called dual concept of biodiversity is discussed: (1) the component 
measuring number of forms (species) in the system and (2) component 
identifying the quantity (population size) of these forms. The majority of 
biodiversity measures combine both these components in various kinds of ratio 
indices. Several key numerical principles underlying large families of 
biodiversity measures are explained. These are so-called Shannon’s concept of 
biodiversity, principle of dominance, principle of evenness, species-abundance 
cumulative profiles and niche-oriented modeling. The paper concludes that the 
remarkable specifics of biodiversity data and biodiversity itself make this field 
extremely challenging for computational science, including computer-assisted 
simulations and modern data mining techniques. Furthermore, the estimation of 
uncertainty that is associated with different biodiversity measures is still not 
adequately addressed in computationally-oriented literature. This might be 
extremely important for the application of biodiversity monitoring as a 
standardized input in ecological risk assessment studies.  

Keywords: biodiversity, diversity indices, species-abundance models, niche-
oriented models 

1   Introduction: biodiversity, its forms and interpretation  

The diversity simply means the variety of forms in some examined system, regardless 
of its biotic or abiotic character. The biodiversity then logically means the variety of 
biological forms in a biological system. Of course, no one can imagine our world 
without its biological (natural) variability and that is why we can call the biodiversity 
“a principle of life”. Everything starts from the very origin of the life. The variability 
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is intrinsically associated with the genome structure, starting even from the 
elementary codon sequence. The so-called gene polymorphism is defined as a genetic 
variant that appears in at least 1% of a population. By setting the cut-off at 1%, we 
exclude the spontaneous mutations that may have occurred in a single family (and 
spread through the descendants). The gene polymorphism and many other molecular 
mechanisms involved in genome replication form a base that generates variability or 
changeability in all subsequent levels of organization of biological systems. It means 
the variability of forms from the taxonomic point of view, as well as the morphologic, 
physiologic, metabolic or even behavioral ones. We can conclude that the biodiversity 
is diverse itself. The modern biology distinctly recognizes many mutations of this 
phenomenon, each with its very specific consequences and interpretation. To mention 
the most frequent attributes of the word biodiversity, we must mention the following 
adjectives: genetic, physiological and eco-physiological, structural, taxonomic, and 
behavioral.  

This paper is focused mainly on the explanation of general, widely accepted, let’s 
say standard, principles of biodiversity. Our primary topic is the taxonomic diversity 
measuring the variety of species in biological communities or in ecosystems. This 
field of biology initiated the research of biodiversity in the past and stimulated also 
first computational attempts to mathematically standardize the evaluation (Pielou, 
1969, 1975; Krebs, 1989).  However, the world is changing and nowadays we can 
even read the human genome and map DNA varieties with less than 1 % incidence 
(Barnhart, 1989; DeLisi, 2001). Using this genome diversity research, we can identify 
the causes of different characteristics that relate to specific segments of human 
population as well as of other biological populations. It can strongly contribute to our 
understanding of human evolution. Another benefit could be the research of diseases. 
The diversity research could help us to explain why certain groups are vulnerable to 
certain diseases and how populations have adapted to these vulnerabilities. All these 
modern features of biodiversity research are beyond the scope of this introduction and 
they are addressed in the other papers of the proceedings. 

This methodical introduction is somewhat simplified because there is no 
straightforward link between genotype and phenotype variability, especially in diploid 
or aneuploid cells or organisms. In the real world, the final variety of forms, e.g. 
really expressed gene alleles, translated genes or the assemblage of species, inevitably 
depends on factors of surrounding environment. In some sense, we must accept the 
environment as a factor constituting the variability of biological world; at the same 
time, however, the environment is constituted or at least influenced by the processes 
mediated by living organisms. To conclude, although we primarily examine the 
biodiversity, we must also study the diversity of environmental conditions. This 
principle is applied in any level of organization, including genetic or molecular 
systems. 

And vice-versa, the remarkable changes in biodiversity indicates probable changes 
in life, nutritional or environmental conditions in the examined system. The changes 
in structure of biological communities due to multiple anthropogenic stresses have 
recently received an increasing attention as a perspective indicator system of 
ecosystem integrity. Scientific data concerning this topic – and especially statistically 
derived outputs – play an indispensable role in the identification or the retrospective 
evaluation of risks associated with environmental disturbances.  
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If we need to characterize the biodiversity as an environmental indicator system in 
one word, we should use the word complexity. Yes, biodiversity is really very 
complex, as it comprises the status of many forms, very distinct species, with their 
own evolutionary strategy, habitat and niche preferences. The complexity is surely 
positive if we are able to measure it representatively – in such case, it brings a really 
complex and valid interpretation. The ecological risk assessment, based on the 
diversity of biological communities, provides a very relevant and straightforward 
interpretation for examined ecosystems. 

However, the complexity is inevitably coupled with a relatively low specificity. 
The more complex end-point is used, the less specific can be the interpretation of 
changes. That is why the biodiversity is frequently listed among the so-called 
integrating parameters. The explanation of this term is simple. To register significant 
changes in biodiversity, especially at ecosystem level, we need a long-term time 
series of measurements of many biological communities. Changes in such system 
naturally integrate numerous stimuli, both natural (nutritional status) and 
anthropogenic (toxic pollution). Complex communities comprise a variety of species 
with different susceptibility to the environmental stress which could make 
biodiversity patterns rather difficult to identify. The bio-indication of detrimental 
changes at this level should always be coupled with a well-optimized and powerful 
statistical treatment. 

In view of these features that could mask real mechanisms of stress influence, the 
comparative evaluation of biodiversity in different stressed communities appears to be 
a fertile area of research. Apart from an increasing scientific interest, there is still lack 
of standard statistical methodology in this field (Washington, 1984; Hughes, 1986; 
Krebs, 1989; Fausch et al., 1990; Tokeshi, 1993). Statistical methods are often used 
only as a tool for indication of patterns, rather than for explanation of mechanisms or 
quantity. 

Last but not least, we must mention the communication and presentation power of 
biodiversity. The biodiversity in the colloquial and aesthetic sense represents a widely 
accepted and required attribute of nature and countryside. The drop in biodiversity is 
clearly recognized as a risk by general public. So although biodiversity is a relatively 
complex endpoint, which requires high-volume and long-term data, it is a favorable 
endpoint for environmental studies. The biodiversity has the power to demonstrate the 
value of ecosystem to be protected. Monitoring with incorporated biodiversity 
measures can help to communicate and to manage the risk.  
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2 Biodiversity data as a unique challenge for the computational 
science

This chapter brings a brief methodical overview of approaches currently available for 
the analysis of biodiversity data.  A more detailed description of individual techniques 
can be found in the other chapters of the proceedings.  

2.1   Measures of biodiversity: why and how to analyze them  

The relatively complex definition of biodiversity presented in the previous chapter 
necessarily opens the question how to analyze it. If we wish to work with the 
biodiversity as an indicator system, we must be able  

- to quantify it  
- to define the reference status (at least probabilistically)  
- to mutually compare different systems  
- to detect changes in time  

 
We strongly need some numerical measures that can indicate the 
increasing/decreasing variability of forms in the analyzed system. And not only blind 
indication: we need to interpret what has happened to the biological system and 
“inside” the biological system. It means to detect what components disappeared or 
increased in incidence, complex structural changes, changed proportions among 
components, etc. The so-called biodiversity measures are therefore assessed also from 
the viewpoint of their computational background and relevant interpretation. The 
current literature offers hundreds of such measures, but not all represent the proper 
and best choice for all types of data. That is why we try to explain here the main types 
of biodiversity metrics in mutual comparison. A more detailed insight into the concept 
of biodiversity measures can be found in the chapter written by Jarkovsky et al. in the 
proceedings. 

2.2   Biodiversity data and its specifics  

The biodiversity at any level of organization is described through two basic 
components (we speak about the “dual concept” in biodiversity measurement, see also 
Fig. 1): 

(1) The count of forms that comprise the biological system. A typical example is 
the number of species (species richness) as a simple count of species in the 
community. The community can thus be species-rich or poor.  

(2) The quantification of occurrence (incidence) of the forms. This is typically 
the abundance specifying the number of individuals per species, or the more 
frequently used biomass quantification, respiration or another metabolic 
activity, etc. This component is often called the heterogeneity measure. The 
role of this component is to quantify the relative size of populations of 
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species that is valuable to give them relevant weights, e.g. to identify 
dominant species, rare species, etc. 

 

Species richness: no. of
unique species

0
1
2
3
4
5 Heterogeneity: relative 

abundances

 
Fig. 1. Dual concept associated with the biodiversity data: the number of species and the 
relative size of their population 

In a relevant biodiversity analysis, both components mentioned above should be 
incorporated. We cannot rely only on simple number of species (forms). Furthermore, 
various measures can be simultaneously employed as quantifying component 2 and 
such multivariate investigation can indicate different underlying mechanisms. It must 
be however emphasized here that the two components might not be necessarily 
coupled or correlated. The increasing number of species is not always associated with 
an increasing abundance without any change in the community structure. This fact 
forms the real substance of biodiversity measurement where we examine relationships 
between the number of forms and their quantitative presence in the system. Indeed, 
the majority of the biodiversity measures are based on ratio or relative weighting of 
the species richness and heterogeneity measures. 

There is one very important aspect that completely separates processing of 
biodiversity data from the other fields of biostatistics. It refers to the sample size 
phenomenon. The standard statistics tends to optimize the sample size in order to 
reach a sufficient power of applied statistical test(s), e.g. for the comparison of two 
different experimental groups. Such an approach simply cannot be adopted for 
biodiversity analysis: here, the number of species (forms) is strictly given by the type 
of the system. Some biological communities are species-rich, some are not, and this 
fact itself contributes to the biodiversity estimation. That is why it is so important to 
weight number of forms by their relative quantity (size) in the system. The 
heterogeneity measures generate patterns that are at least partially independent on the 
number of species present. These distributional patterns are called species-abundance 
profiles.  
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Fig. 2. Important types of plots used to document species-abundance profiles  

Figure 2 summarizes different types of the so-called species-abundance plots that are 
commonly used to show species-abundance profiles in different communities. The 
most important “species rank plot” arranges species rank in the X axis according to 
their quantity plotted in the Y axis. The plot can easily indicate very important 
changes in the community structure (see also Fig. 3):  

- changes in proportion of different species (Fig. 3A)  
- loss of rare species (Fig. 3B)  
- loss of some remarkable part of the community or some part sensitive to the 

influential factors (Fig. 3C, D)  
 
The principle of biodiversity measures thus cannot stem only from the standard 
stochastic methodology. Instead, we use several families of measures with the 
interpretation more or less focused on the number of forms and their relative quantity.  
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Fig. 3. Species-abundance profiles and indication of impact of influential factor (marked as 

arrow: stress factor, changes in nutritional resources, etc.)  

2.3   Biodiversity indices  

Biodiversity indices are a frequently used measure that became nearly synonymous to 
the term biodiversity. Very typically, these measures were developed on the basis of 
some empiric experience or requirements and they got specific names that correspond 
to different fields of biology or to the authors’ names. The interpretation of many 
indices is associated with a given biological discipline. Table 1 brings a short 
overview of the most important measures. We should mention here the following 
principles that are intrinsically associated with biodiversity indices:  

- The species richness measure is the simplest dimension of biodiversity derived from 
counts of unique species (or other examined forms). This dimension is commonly 
marked as S in formulas and is called the alpha-diversity. Typical representatives of 
this family are Margalef or Menhinick index (Table 1). Usability of species richness as 
separated measure might be disputable: it always depends on given assumptions and 
the investigator must control the risk of bias. The species richness is recommended for 
the comparison of the whole ecosystems, where it simply comprises tens-hundreds of 
species and serves as an overall “health” indicator. 

- The concept of dominance can be easily derived from species richness. It measures the 
relative population size of the most frequent species. Again, this is a very simplified 
measure, however with a serious interpretation, because it can be attributed to the type 
of biological community. It also reflects nutritional, seasonal and other determining 
environmental conditions. Basically, it can be easily understood: for example, if we 
have the community with dominant species representing 90 % of the whole size 
(measured as individuals, biomass, etc.) or a community with 1-2 dominant species 
altogether only with 20 % of the whole size. For the formula, see for example the 
Berger-Parker index in Table 1.  
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Table 1.  Overview of biodiversity indices (S=number of species, N=number of individuals, 
ni=number of individuals of the i-th species) 

Index Equation  

Margalef index (Cliphord & 
Stephenson, 1975) N

SDMg
ln

)1( �
�   

Menhinick index (Whittaker, 1977) 
N
SDMn �   

Shannon index (Pielou, 1975). ��� ii ppH ln´ , where 
N
np i

i �   

Brillouin index (Pielou, 1969, 1975) 
N

nN
HB

i���
!ln!ln

   

Simpson index (May, 1975) � ��
�

�
��
	



�
�

�
)1(
)1(

NN
nnD ii

  

Berger-Parker index (Berger & 
Parker, 1970, May, 1975) N

Nd max
�  where Nmax  - abundance of the 

most abundant species 
 
 

- The Shannon’s concept underlying the Shannon’s diversity index (H’; see Table 1) 
measures the information entropy, considering species as symbols and their relative 
population sizes as probability. The advantage of this concept is that it simultaneously 
takes into account the number of species and their relative distribution, and thus it 
introduces the measure of the so-called evenness. The index is increased either by 
having more unique species, or by having a greater evenness. The maximum evenness 
corresponds to the ideal model situation when all the species reach equal population 
size. This concept was widely adopted in many biological disciplines as it offers a 
valuable interpretation also to the nutritional and environmental conditions. More 
species with a more equal distribution imply more favorable conditions with less 
frequent competitive interactions. In the case of a limited number of species (typically 
in biodiversity monitoring in urban areas), the Brillouin’s formula is recommended as 
less biased than original Shannon’s measure (Table 1).  

- The concept of probabilistic similarity is based on probability calculations, e.g. the 
probability to catch two individuals of the same species from the pool of N species. As 
an example of such approach, we used the Simpson index (Table 1).  

 
Of course, the estimation of biodiversity using any type of indices can be complicated 
with some probability of error. The level of uncertainty related to the diversity 
measures is not simple and it is not even theoretically completely solved. In fact, 
some diversity indices are applied without an adequate theoretical reasoning. To 
estimate the stochastic variability in terms of standard error and/or confidence limits, 
we often use bootstraping or jackknifing as iterative methods to estimate the 
variability of different indices. However, there are additional risks of bias that cannot 
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be simply detected by formulas, namely the risk of non-representative (biased) 
sampling. The analysis of this problem is beyond the scope of this overview; for more 
information, we recommend an excellent monograph written by Magurran (1983).  
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B. Proposed stochastic
estimate of the Q
(Dušek et al., 1998)

Xi = (Sj - Sj') / Ln (N j / Nj')
Q = median or geometric

mean of Xj values

S25

Experimental
points: 

(j: 1, 2, ......., r-1, r)

A. The Q statistics
According to Kempton & Taylor

(1976, 1978)
[(S25 / 2) + S S i + (S 75 / 2)]

Ln (N 2 / N1)
Q = 

 
Fig. 4. Cumulative species-abundance curve and its stochastic outcome: the Q 
statistics 

2.4 Stochastic analysis of cumulative species–abundance curves  

This is one of the most frequently used graphs for biodiversity data in cumulative 
species-abundance curve (see Fig. 2 and Fig. 4). It can be simply drawn by plotting 
the species rank against the cumulative sum of their population size. The figure can be 
plotted for biological communities of any size and multiple lines can be easily 
compared directly in just one figure! We can hardly find another type of graph with 
such an user-friendly layout. Moreover, the cumulative curves provide a very 
important computational added value – we can estimate the slope as a measure of 
diversity. It is called the Q statistics and should be mentioned here for its robustness 
and flexibility. 

The analyses of the cumulative species abundance curves were applied as a rather 
robust alternative to common biodiversity indices (Kempton and Taylor 1976, 1978) 
or as a stochastic estimate of the Q using consecutive computational steps (Fig. 4, 
Tab. 2). If we choose the median estimate of the slope of species cumulative 
frequency, it is important to note that its flexibility generally allows the estimation of 
the Q for a variety of abundance values from the whole range to very small intervals. 
The estimates can be based on the whole range or the inter-quartile range of 
abundance values (marked as Qtotal, Qintq). Dusek et al. (1998) proved a highly 
significant correlation between Qintq and Q according to Kempton and Taylor (1978) 
and justified the proposed stochastic approach as being compatible with the previous 
algorithm.  
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Table 2.  Q statistic as stochastic outcome from cumulative species–abundance curves 

Index Equation  

Q statistics inter-quartile  
(Kempton and Tailor 1976, 1978) 
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total number of interquartile species,  R1 a R2 – 
25% a 75% percentile, nR1 – number of species 
in lower quartile class, nR2 – number of species 
in upper quartile class.  

Q statistics stochastic  
(Dušek et al,1998) 
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, for all combinations of 

Sj, S j´ and Nj, N j´  (j > j´ , j=1,2, …….r) where 
S – cumulative number of species, N – number 
of individuals in given class,  r – number of 
classes (i=1,2,……r(r-1)/2). Final Q is 
computed as median or geometric mean of Xi. 

2.5 Correlation of different biodiversity measures  

It is evident that the correct application of biodiversity measures is strongly associated 
with their information potential and interpretation. However, there is an universal 
tendency, leading to the mutual correlation of biodiversity indices and other related 
statistics. The biodiversity in general should grow with the increasing number of 
unique species (concept of species richness) and with a more equal proportional size 
of their populations (growing heterogeneity). A very important factor is our ability to 
define positive correlation with some widely used biodiversity metric with an already 
accepted interpretation, for example with Shannon’s index. In such way, the 
correlation between stochastically estimated Q statistics (cumulative species-
abundance curves, see 2.4) and Shannon’s concept was documented in large 
communities of Ephemeroptera and Plecoptera (Zahrádková et al., 1998). Such 
findings represent a key point in the interpretation of the Q statistics. As expected, a 
more profound relationship was found between H´and Qtotal than between H´ and Qintq 
(see also text in 2.4). However, a non-random distribution of species with an 
extremely low or high abundance could bias the estimate, as it is known for 
Shannon’s H´ (Pielou, 1975).

We can conclude that many diversity indices should principally positively 
correlate, of course when measured in similar types of communities. Similarly, we 
can use directly the primary abundance values to quantify the position of species 
within the community and to perform multivariate analyses. Such analyses are 
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typically used to cluster species or sampling sites according to similarities in the 
incidence of certain species. Biodiversity measures can also enter such analyses. More 
information on multivariate biodiversity analyses can be found in the paper of 
Jarkovsky et al. in the proceedings. 

2.6 Species-abundance models 

In addition to the species richness and heterogeneity measures, which have been 
described above, we can evaluate the biodiversity using the so-called species-
abundance models. We can select from many types of model templates with an 
already formalized mathematical background. One may ask now, what is the real 
added value of such models, if we have so many easily calculated indices? We will 
try to answer this expectable question in the following points:  

a) The species-abundance models present a more sophisticated alternative to simple 
indices. Once we fit a proper model to the species-abundance profile of the 
community, we can monitor substantial changes (i.e. changes that really affect the 
structure of the community). 

b) The models contribute to the typology of different biological systems with the most 
remarkable outcome in the standard ecology. Some communities follow certain 
(typical) species-abundance pattern. Such typology cannot be done only on the basis 
of diversity indices because these measures cannot describe the profile characteristic 
for the position of different community components. 

c) Species-abundance models represent a very powerful tool for the studies relating 
biodiversity patterns to environmental conditions or available nutrients. Of course, 
the structure of biological community reflects these conditions and some types of 
models can be typically found under stressed situation. For example, log-normal 
model (see also Table 3 and Figure 5) had been frequently attributed to undisturbed 
communities with a tendency to be replaced by log series or geometric series in 
stressed communities (Gray & Pearson, 1982). 

 
The literature distinctly recognizes the so-called stochastic species-abundance models 
that can be fit according to clearly given templates and equations, using standard 
stochastic methodology. It means goodness-of-fit test (for small assemblages of 
species: Kolmogorov-Smirnov one-sample test) that can assess a satisfactory fit to 
primary data. Basic types of the models are listed in Table 3 and displayed in Figure 
5. 
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Stochastic models Niche oriented models

> 20 species 

> 4 – 5  species  
Fig. 5. Stochastic and niche-oriented species-abundance models 

Table 3.  List of species-abundance models with relevant references  

Type of model Model Author 
Stochastic models Logarithmic series Fisher et al. (1943) 
 Log normal Preston (1948, 1962) 
 Negative binomial Anscombe (1950), Bliss and 

Fisher (1953) 
 Zipf-Mandelbrot Zipf (1949, 1965), 

Mandelbrot (1977, 
1982) 

Niche oriented models Geometric series  Motomura (1932) 
 Particulate niche MacArthur (1957) 
 Overlapping niche MacArthur (1957) 
 Broken stick MacArthur (1957) 
 MacArthur fraction Tokeshi (1990) 
 Dominance pre-emption Tokeshi (1990) 
 Random fraction Tokeshi (1990) 
 Sugihara’s sequential 

breakage 
Sugihara (1980) 

 Dominance decay Tokeshi (1990) 
 Random assortment Tokeshi (1990) 
 Composite Tokeshi (1990) 
 
However, the stochastic techniques suffer from sample size that is mostly relatively 
small in biological communities (we cannot optimize species richness; it is definitely 
given for a certain biological community). This fact can strongly limits the 
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discrimination power of these models, the verification becomes inconclusive and the 
models cannot be taken as statistically proved at reasonable significance level. Similar 
conclusion can be made in environmental or ecotoxicological studies applying 
stochastic species-abundance models. Stochastic foundation of the models determines 
their excellent properties as a generalized comparative tool, sufficiently flexible even 
for the evaluation of quite different heterogeneous communities (Routledge, 1980). 
Although this robustness might be desirable in comparative ecotoxicological studies, 
the rather complex models cannot directly reflect the mechanisms underlying the 
observed, environmentally induced changes.  
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RA = Random Assortment
RF = Random Fraction
MF = MacArthur Fraction
GS = Geometric Series
DP = Dominance Preemtion
DD = Dominance Decay

Which one fits to 
real data? 

The computation of 
expected model and its 
confidence interval is 
based on computer 
simulation for given 
number of species

Several methods for testing 
of fit between observed 
and predicted model  -
multivariate distance,Monte
carlo test etc.

?

Conclusion: the
data fits one of 
niche oriented 

models  
Fig. 6. Computer assisted estimation of niche oriented species-abundance models as proposed 
by Tokeshi (1990, 1993) 

Fortunately, the recently developed niche-oriented species-abundance modeling 
(Tokeshi, 1990, 1993) allows an effective indication of species heterogeneity with a 
consideration of the relationship between resource and species-abundance pattern. A 
basic overview of these models is given in Table 3 and in Figure 5. Based on 
computer-assisted simulations (see scheme in Fig. 6), these models can be quite 
effectively fit to the species-abundance data of relatively small or even very small 
communities (less than 5 unique species). We can unambiguously mark these models 
and their mathematical background as revolutionary, because they released the 
modeling from the prison of sample size calculations. And additionally, the proposed 
models recognized the species-abundance patterns that imply an important 
relationship between the biology of given genera and their sensitivity to the 
environmental stress. The niche-oriented models are defined through a sequential 
breakage or filling of total niche (Fig. 7):
- Geometric series: the 1st species is supposed to preempt a fraction k of the total niche, the 

2nd species k of the reminder, the 3rd one again k ….. .; then the relative abundances of 
species form a geometric series with a standard formula 

- Random fraction: a sequential division of a niche in a random fashion (each fraction is 
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randomly selected for a random and uniform division) 
- McArtur fraction: a simultaneous random breakage of the niche into several species 

(special type of Broken Stick model – see also Figure 5) 
- Random assortment: suitable for highly dynamic communities under a varying 

environment; abundances of different species are not mutually related at all (apparently a 
consequence of non-correspondence between niche fragmentation and abundances of 
species) 

- Dominance preemption: the model represents general and universal concept of 
dominance; 1st species exerts its dominance by occupying more than half of the total niche, 
and leaves the reminder to be exploited by the 2nd species in the same manner (the fraction 
k here represents the occupied proportion). 

 
Tokeshi in his original papers (1990, 1993) gave an excellent biological reasoning for 
each individual model, including analyses of consequences for resource/niche 
fractioning. The models are open to a further scientific discussion, applications and 
possibly to the mathematical development. The strategic advantage of this approach, 
i.e. the ability to estimate the species-abundance profile in really small components of 
large communities, has still not been adequately addressed in literature. 

The experimental design of environmental and ecotoxicological monitoring is 
under a permanent pressure to reduce cost of routinely performed campaigns. 
Although it might seem improbable, a taxonomic survey is economically demanding, 
time-consuming and laborious. Moreover, a survey of large biological communities 
depends on experts in various taxonomic units. Therefore, we must search for an 
indicator species or at least a small assemblage of such species. The niche-oriented 
approach opened a very interesting challenge in this field. Using this approach, we 
would be able to relate diversity patterns to changeable environmental conditions.  

3   Biodiversity of large communities 

3.1  Biodiversity of large communities: sample size vs. information value  
 
Let us focus our methodical comments on large biological communities, typically 
sampled in large-scale ecosystem studies. Samples with many species strengthen the 
estimation of common biodiversity indices and even the simplest counting of species 
can serve as a basis for the comparison of different systems (species richness as a 
marker of ecosystem status). However, the situation is not so ideal when we try to 
study the structure of the community and species-abundance profiles. Large 
communities comprise numerous taxonomic units, with very different evolutionary or 
feeding strategy. It can be even impossible to interpret overall species-abundance 
profiles is such heterogeneous field. The fractionation of the whole assemblage and 
separation of more homogeneous components can be apparently recommended as a 
very effective solution. However, the optimization of stochastic techniques for 
analyses of biodiversity of communities, which have been simultaneously fractionated 
according to different criteria, is a rather neglected area. 
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The fractionation can help us to exclude some evidently outlying units that should not 
be mixed with the others. Applying the fractionation can also detect components 
sensitive to environmental changes. It is surprising that such studies separating sub-
components of biological systems with subsequent biodiversity measurement are still 
relatively rare. Any separation of detailed components of the whole community is 
accompanied with the following methodical problems or aspects:  

- necessity of biological, not only analytical expertise: many communities are 
really complex and complicated, and the fractionation must respect already 
given biological (taxonomic) boundaries and limits  

- correction for multiple comparison: the fractionation can be redundant, i.e. 
leading to several mutually overlapping sub-components; the comparison of 
different samples then faces the problem of multiple comparison and should 
be corrected for an error of Ist type 

- analyses of biodiversity based on small assemblage of species or 
assemblages of species of different size; in that case, however, we must 
carefully select the proper methodology  

 
Apparently, the fractionation of biological communities is required and valuable, 
although it generates methodical problems. Whenever we meet such complex and 
heterogeneous mixture of components, we should base the biodiversity analysis on 
robust techniques. Such approach is able to maintain the comparability of outcomes. 
For such purpose, we can recommend: 

- common species richness measures: although they are rather of a poor 
information value, the interpretation is robust and straightforward 

- cumulative species-abundance curves and associated Q statistics: a very 
robust estimate with Shannon-like interpretation; the estimate is functional 
for even very small communities  

- niche-oriented species-abundance models as a methodology usable for very 
small assemblage of species; outcomes lead to a biologically relevant 
interpretation  

3.2 Biodiversity of large communities: metazoan parasites of fish as example 

This shortened case study represents an attempt to define the environmental indicative 
potential of biodiversity of monogenean parasites on the basis of hierarchically-
structured species-abundance data. For this purpose, Monogenea were selected as one 
of the most numerous and diverse group of ectoparasites infecting fish (here Chubb). 
At present, there are estimated 3,000 monogenean species which have been described 
in about 1,500 species of fishes. The study is basically comparative and work with 
parasite communities from two river sites, one reference and one polluted. Primary 
data were taken and simplified from the paper Dusek et al. (1998). 

It is apparent from a graphical display in Figure 8 that Monogenea formed the most 
abundant group of ectoparasites in both compared sites. Apart from a similar 
proportion of ectoparasites or Monogenea in both sites, there was a significant 
difference in the distribution of non-monogenean ectoparasites, namely the group 
Bivalvia. While Bivalvia formed a relatively abundant part of ectoparasites in the 
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unpolluted site, these species represented only a minor part of parasitofauna in the 
anthropogenic site (Fig. 8). This difference seemed to be easily explained on the basis 
of indirect life cycles of bivalvian molluscs: a substantially decreased number of their 
free living stages was stated in the anthropogenic site, apparently due to organic 
pollution. Therefore, the accurate assessment of any environmental change at the 
community level was very complicated due to the dominant position of Bivalvia in the 
control site, and the applied separate evaluation of Monogenea appeared to be both 
taxonomically and ecologically meaningful. 

The applied fractionation scheme was further justified by the direct development of 
monogeneans without the participation of intermediate hosts. The need to extract 
taxonomically comparable groups led to the separation of ectoparasites and 
particularly Monogenea in the first two steps and to a subsequent subdivision of 
Monogenea according to different taxonomic or ecological criteria, as is shown in 
Figure 8. The study solves the two principal complications associated with analyses of 
biodiversity in such a hierarchical system. The first one is a profound taxonomic 
heterogeneity at higher levels of organization which could mask environmentally 
induced changes and mechanisms. And secondly, the statistical evaluation became 
increasingly more difficult as the fractionation led to small assemblages of closely 
related species. 

Considering community level and separated ectoparasites, the increased values of 
Shannon diversity index H´ clearly proved a more equal distribution of species in the 
anthropogenic site. Values of dominance D, Margalef´s index M and a portion of rare 
species were numerically higher in the control than in the anthropogenic community, 
but there were nearly no indices of statistical significance of these trends (data not 
shown). The seemingly illogically lowered dominance and increased homogeneity of 
species distribution in the stressed site reflected the top position of parasites in the 
aquatic ecosystem. The parasites integrate adverse effects of complex and naturally 
varied stresses, influencing also the other components of aquatic ecosystems. The 
observed changes could be a result of two opposite way of stress influence, i.e. an 
effect on the entire parasite community and a parallel reduction of fish defense 
mechanisms against pathogenic agents (Thomas, 1990; Moriarty, 1993; Gelnar and 
Špakulová, 1997). 
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Fig. 8. Case study on fish parasites: scheme of relevant fractionation of the whole community 
(C: Control site; A: Site under anthropogenic stress)  
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Table 4. Species richness and heterogeneity measures evaluated for community and 
for subgroups of metazoan parasites 1 

Assemblage (category) 
of species 

Shannon´s index 
(H´)

Dominance  
(in %) 

Margalef´s 
(M) 

 C A t test 2 C A C A 
Component community 2.75 2.89 3.279 * 20.9 14.8  4.5 4.1 
 Endoparasites 1.13 1.43 2.404 * 70.1 52.0  1.5 1.3 
 Ectoparasites 2.53 2.68 1.993 * 23.7 18.2  3.3 3.1 
  Monogenea 2.59 2.55 0.951 14.8 19.2  3.1 2.8 
 Life strategy         
   Generalists 2.12 2.25 2.794 * 20.7 53.2  1.9 1.9 
   Specialists 2.25 1.31 3.757 * 40.0 23.6  1.4 1.2 

 Genera         
  Dactylogyrus 1.47 1.03 4.416 * 40.1 69.0  1.0 1.0 
  Gyrodactylus 1.92 1.87 0.628 24.8 26.  1.4 1.2 
  Paradiplozoon 1.66 1.75 0.713 36.5 32.9  1.1 0.9 
 Guilds         
  Gills 2.09 1.99 1.060 31.3 42.6  2.6 2.5 
  Fins + skin 1.93 1.90 0.634 23.9 27.1  1.4 1.4 

 
1 Two compared sites (C - control site; A - anthropogenic site) with hierarchically separated 

subgroups of metazoan parasites. 
2 t statistic as a result of testing differences between the sites in Shannon´s heterogeneity 

measure (approximate t-test, Zar, 1984; * marks the category with significantly different 
values H´ in the sites: p < 0.01).

 
Surprisingly, the statistical significance of these patterns was not detected when 
biodiversity analyses were carried out for the separated Monogenea (Table 4). 
Therefore, the limited development of bivalvian molluscs due to affected free living 
stadia appeared to influence the already described difference in biodiversity between 
the sites at the component community level. Based upon the set of questions induced 
by this outcome, a further inspection of monogenean group was necessary. 
Monogenean parasites grouped according to their specificity revealed the most 
significant differences between the sites (Table 4). In comparison with the control 
site, a significantly less homogeneous distribution of monogenean specialists (lower 
H´ values) was associated with sharp changes in the dominance, and a portion of rare 
species was found in the polluted site. The biodiversity of generalists revealed clearly 
the opposite pattern.  

To conclude, the previously described results document the value of the 
fractionation of biological community and associated methodical problems as well. 
The separation of monogenean parasites and their stratification according to life 
strategy (generalists vs. specialists) led to the definition of an environmentally 
sensitive component of the whole community. Both simple species richness estimates 
and species heterogeneity measures agreed in this conclusion. 

The consequent analyses of the study were focused on species-abundance models, 
both stochastic and niche-oriented. The stochastic models (log series and log-normal) 
confirmed already described features, i.e. a more homogeneous distribution of species 
with middle-ranged abundance, decreased species richness in the anthropogenic site 
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as compared to the control site, the opposite behavior of specialists and generalists 
and no significant environmentally induced shifts in diversity within the inhabited 
guilds. Unfortunately, the estimates of the parameters suffered from small samples, 
except for the whole community level and separated ectoparasites. However, niche-
oriented approach found distinct models in different Monogenean genera and related 
the observed changes of control and polluted sites to the biology of these species. For 
more information see the study of Dusek et al. (1998).  

4   Ecological risk assessment and biodiversity measures 

4.1 Definition of risk assessment and the role of biodiversity 

Ecological and human risk assessment can be characterized from the viewpoint of 
informatics as a complicated processing of heterogeneous data (mostly retrospectively 
collected from various sources) leading to the probabilistic estimation of some 
uncertain (prospective approach) or, on the other hand, a relatively certain 
(retrospective approach) risk event. Key methodical steps of the whole process are 
summarized in Figure 9 and can be simply defined as follows: 

1. Problem formulation and hazard identification. Introduction to any 
reasonably designed study. It includes the recognition of the area of interest, 
the collection and aggregation of required information and a preliminary 
focus on the identified principal pollutants (stressors), the source of 
contamination and the most vulnerable environmental components and 
biological receptors.  

2. Multi-component exposure assessment. Exploration, identification and 
quantification of important exposure pathways. This includes modeling and 
summaries of accessible data, as well as empirical estimates of 
environmental concentrations of proposed key pollutants. 

3. Biological effect evaluation. The empirical stage focused on concentration-
related or dose-related reactions of biological systems. The principal aim is 
to get parametric measures that identify biologically dangerous concentration 
levels. The process should not be limited only to laboratory testing, it works 
with ecosystem monitoring as well. Whenever we have access to regional or 
national bio-monitoring network, we should use this data as very powerful 
information background.  

4. Risk characterization is a completely computational process that leads to the 
probabilistic estimate of the risk. In fact, it consists of a stochastic 
aggregation of data from all the preceding methodical blocks.  

 
In other words, there are many inputs required and only limited number of outputs 
provided, however always with a serious impact.  
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Fig. 9. Environmental risk assessment (EcoRA) and key methodical steps 

The biodiversity as an intrinsic attribute of biological communities and ecosystems 
plays a fundamental role in the whole process of environmental risk assessment. It 
can be employed in several steps: 

- The problem formulation often requires a definition of the status (“health”) of 
ecosystems in the area of interest. Here, the biodiversity measures contribute 
substantially because they have a long-term “memory”, i.e. the structure and diversity 
of biological communities can reflect the stressed impact that had been performed a 
long time ago. The biodiversity can also help to describe potential “hot spots”, i.e. 
sites in the assessed area with a highly probable stress influence.  

- Simple mapping of biodiversity in the area of interest can help to localize places with 
improbable findings – these sites can be subsequently subjected to chemical 
monitoring to prove exposure to toxic compounds.  

- The biodiversity has also its place in the evaluation of biological effects of potential 
stressors.   

- The biodiversity might be one of the most important end-points in the subsequent 
biological monitoring of the area of interest.  
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Masaryk University, Faculty of Science, Department of Mathematics and Statistics,
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Abstract. The contribution presents several simple models of popula-
tion dynamics, both with the discrete time (difference equations) and
with the continuous one (ordinary differential equations). The models
are realized using free software – spreadsheet Open Office Calc and R-
language.

1 Introduction

Biological communities are formed by populations. Such a trivial observation
can serve as a starting point to consideration on diversity of natural biocenoses
that can be understand as a number of populations constituting community,
abundances of these populations, amount of relations among them or all of these
characteristics together. One can put questions such that: Can a single popu-
lation in a community survive? On which conditions? What type of intra- and
inter-population interactions promote or inhibit abundance or even presence of
a population? Why do organisms become extremely abundant one year and then
seem to disappear a few years later? Why do population outbreaks in particular
species happen more or less regularly in certain locations, but only irregularly
(or never at all) in other locations?

One of possible tools for dealing such questions is mathematical modeling of
population growth. The mathematical population dynamics constitutes a classi-
cal part of the mathematical biology. It goes back to the Leonhard Euler’s Intro-
ductio in analysin infinitorum (1748) and continues by seminal works Recherches
mathématiques sur la loie d’accroissement de la population by Pierre-François
Verhulst (1845), Elements of physical biology by Alfred J. Lotka (1925), Leçons
sur la théorie mathématique de la lutte pur la vie by Vito Volterra (1931), Sula
teoria di Volterra della lota per l’esistenza by Andrej N. Kolmogorov (1936) or
On the use of matrices in certain population mathematics by Patrick H. Leslie
(1945), cf. [1]. In the present time, it pose a well established theory with a huge
amount of literature. E.g., the books [9, 6, 10, 12, 11] can serve as good and ac-
cessible introductory texts to the area of mathematical population models. The
issues of population dynamics in a larger frame of mathematical biology are dealt
in the books [8, 3, 7, 2].

The aim of this contribution is not to survey the mentioned literature and
to present comprehensive mathematical theory in the background of models in
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population dynamics but to show how one can “play” with some simple mod-
els and this way she or he can understand some population principles and to
gain certain insight into processes occurring in ecology of populations. And, sec-
ondary, to show that such a “play” requires no expansive “toys”: one can have
a lot of fun with a free software.

For the purpose, the subsequent section summarize the very first mathemat-
ical models of the growth of one isolated population and of interacting popula-
tions. The third section shows realization of population models with the non-
overlapping generations (dynamical models with discrete time, difference equa-
tions) in a spreadsheet. It is based on ideas from the book [5] and the examples
are performed by the Open Office Calc spreadsheets, [13]. The last section deals
with models with overlapping generations (continuous time models, ordinary dif-
ferential equations) and their realization by scripts of R-language, [14]. It utilizes
some material presented in the book [4].

2 Deterministic models of population dynamics

We start with a “first principle of population dynamics” [11, p. 100]: A size
of population increase or decrease exponentially provided an environment where
all of individuals live is constant. This “law” is similar to the Newton’s law of
inertia. Both the laws are abstract and their manifestation in the real world is
not observable; there is no mechanical motion without friction and there is no
constant environment for population growth – at least since each population
transforms its environment. But the physical law is very useful and the law of
population growth should be so. Therefore, we are going to elaborate it in a
more tractable way.

First, let us suppose that the time goes by distinct step, that is a time instant
t is an element of the set {0, 1, 2, . . .}. In another words, there is a “natural”
time unit expressing a duration of life – newborns appear at the beginning of the
period and die at its end. Such an assumption is tenable e.g. for annual plants or
for insects, models established this way are called models with non-overlapping
generations. The basic principle can be expressed in the form

x(t) = x0q
t,

where x0 denotes initial size of population, x0 = x(0), and q is a positive co-
efficient, rate of change of the population size during the unit time interval.
Consequently, x(t + 1) = x0q

t+1 = x0q
tq = qx(t). This way, we obtain basic

discrete equation of population growth in the form

x(t+ 1) = qx(t), x(0) = x0. (1)

An alternative assumption consists in the idea that newborns appear and
individuals die at any time, i.e. the time passes in a continuous way from a
beginning, a time instant t is an element of the interval [0,∞) of reals. A typi-
cal example of such population is the human one. Population models based on
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continuous time are called models with overlapping generations. Now, the basic
principle reads

x(t) = x0e
pt,

where x0 denotes initial size of population anew, p is a real parameter. The
derivative of the function x is x′(t) = x0pe

pt = px(t), hence the basic continuous
equation of population growth takes a form of

x′ =
dx

dt
= px, x(0) = x0. (2)

The solutions of the initial value problems (1) and (2) coincide for t ∈ {0, 1, 2, . . .}
if p = ln q, or, equivalently, q = ep. Let us note, that the population size increases
for p > 0 (q > 1) and that it decreases for p < 0 (0 < q < 1).

In the rest of this section, we deal with the differential equation models.
However, the same considerations might be provided also for models with discrete
time.

In real situation, no population growths according to the idealized equation
(1) or (2), that is, no population is non-influenced. At least, it may be influenced
by itself. More precisely, the coefficient p (or the rate q) depends on population
size, p = p(x) (or q = q(x)). Such dependence may be diverse.

First, suppose that a large population consumes almost all resources of its
environment and, subsequently, it starves and become extinct; the population
exhibits intraspecific competition. That is, p(x) is a decreasing function. More-
over, we can assume that lim

x→0+
p(x) > 0 (small population does not exploit

resources and its size increases) and there is a value K such that p(x) < 0 for
x > K. The positive parameter K denotes carrying capacity of the environment,
i.e. the maximal population size such that he population survives. The simplest
function possessing these properties is the linear one,

p(x) = r
(
1− x

K

)
.

Here, parameter r denotes the maximal possible growth rate of population, the so
called intrinsic growth rate. This way, we obtain the Verhuls logistic differential
equation

x′ = rx
(
1− x

K

)
. (3)

It can be rewritten to the form

x′ = x(r − ax),
where a = r/K.

Alternatively, we can suppose that a small population is not able to survive,
only population large enough prospers, e.g. females find males for mating, adults
individuals are able to protect offsprings against predators etc. The population
exhibit intraspecific cooperation, the so called Allee effect. Now p(x) is an in-
creasing function such that lim

x→0+
p(x) < 0 and there exists a positive survival
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threshold ϑ such that p(x) > 0 for x > ϑ. Once more, the simplest function
possessing such properties is the linear one,

p(x) = d
(x
ϑ
− 1
)
.

The positive parameter d is called intrinsic death rate. The equation modeling
a growth of population exhibiting intraspecific cooperation is as follows

x′ = dx
(x
ϑ
− 1
)
. (4)

A natural population can exhibit both intraspecific cooperation and intraspe-
cific competition; the Allee effects prevails over the intraspecific competition in a
small population whereas the situation is reversed in a large one. Hence, p(x) < 0
for 0 < x < ϑ and p(x) > 0 for x > K; now K > ϑ. This consideration may lead
to the equation

x′ = dx
(x
ϑ
− 1
)(

1− x

K

)
. (5)

One can object that the population models (3), (4), (5) are excessively simply.
There is no evidence that the dependencies of the rate p on the population size
x are linear or quadratic. Hence, we can modify the Verhulst logistic equation
(3) by an additional parameter b to the form

x′ = rx

(
1−

( x
K

)b)
. (6)

The parameter b expresses a “strength” of dependence of p on x: if b > 1 then an
impact of population size to its growth, i.e. the intraspecific competition, is mild
when the population is small and it is stronger when the population is greater;
if 0 < b < 1 than the intraspecific competition in a small population prevails
the one in a greater population; if b < 0 then p(x) is an increasing function
with p(x) < 0 for 0 < x < 1 and p(x) > 0 for x > K, hence the equation (6)
models an evolution of population exhibiting the Allee effect and the parameter
K represents the survival threshold. Consequently, the equation (6) generalizes
both the model (3) and the model (4).

A single population does not constitute any community and so, models of
single population growth seems to be irrelevant for study of diversity. But the
consideration provided may inspire a line of inquiry of interacting population.
Hence, let us consider a community formed by n populations and denote by the
symbol xi = xi(t) a size of the i-th population in a time instant t. Now, we write
down the following system of ordinary differential equation as an analogy to the
basic equation (2)

x′i = xipi(x1, x2, . . . , xn), i = 1, 2, . . . , n; (7)

the growth rates pi depend on sizes of all of the populations forming community.
The system (7) is called the Kolmogorov one. The type of dependence of the rate
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pi on the population size xj determines a kind of impact of the j-th population
to the i-th one, or, conversely, the type of the interaction of the i-th population
with the j-th one determines a sort of dependence of pi on xj . In a more concrete
way:

∂pi
∂xj

> 0: the j-th population promotes a growth of the i-th one, j-th population

is a commensal of the i-th one;
∂pi
∂xj

< 0: the j-th population inhibits a growth of the i-th one, j-th population

is an amensal of the i-th one;
∂pi
∂xj

> 0 and
∂pj
∂xi

> 0: the i-th and the j-th populations exhibit interspecific

cooperation, they are mutualistic, symbiotic;
∂pi
∂xj

< 0 and
∂pj
∂xi

< 0: the i-th and the j-th populations exhibit interspecific

competition;
∂pi
∂xj

< 0 and
∂pj
∂xi

> 0: the j-th population is predator (consumer, parasite)

feeding on the i-th population, the i-th population represents prey (resource,
host) for the j-th population.

∂pi
∂xi

< 0: the i-th population exhibit intraspecific competition;

∂pi
∂xi

> 0: the i-th population exhibit intraspecific cooperation.

Moreover, we can classify populations by the value pi(0, 0, . . . , 0) which express
the growth rate of the i-th population provided on condition that the all of
the impact to population growth are excluded, that is, the intrinsic growth rate
of the i-th population. If pi(0, 0, . . . , 0) > 0 then the i-th population is self-
supporting (autotroph, producer), otherwise it depends on other populations,
the population is consumer (predator, parasite).

The simplest special case of the general system (2) is the one with coefficient
pi that depends on population sizes x1, x2, . . . , xn linearly. Namely, the system
of the form

x′i = xi(r1 − ai1x1 − ai2x2 − · · · − ainxn), i = 1, 2, . . . , n, (8)

which is called the Lotka-Volterra one. Obviously,

∂pi
∂xj

= −aij ,

hence, we can classify the interactions appearing in the modeled community by
signs of the coefficient aij .

The Lotka-Volterra system (8) can be rearranged to the form

x′i = xi (ri − aiixi)− xi(ai1x1 + · · ·+ aii−1xi−1 + aii+1xi+1 + · · ·+ ainxn),

i = 1, 2, . . . , n.
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The first term on the right hand side describes the evolution of the isolated i-th
population and the second one expresses the impact of other population in the
community to the i-th population growth. If ri > 0 and aii > 0, we can denote
Ki = ri/aii and ψi(x1, x2, . . . , xn) to obtain the system of ordinary differential
equations

x′i = rixi

(
1− xi

Ki

)
− ψi(x1, x2, . . . , xn), i = 1, 2, . . . , n. (9)

This system can be interpreted so that the isolated i-th population evolves ac-
cording to the Verhulst logistic equation (3) and this evolution is modified by
the impact of other populations.

Predation represents a fundamental relation among population. Therefore,
let us mention it in more details. Let x = x(t) denote a size of a prey (resource,
plant) population and y = y(t) denote a size of predator (consumer, herbivore)
population. Let us assume that the prey population exhibit a intraspecific com-
petition. Hence, the evolution of the prey population size can be modeled by an
equation of the type (9), namely

x′ = rx
(
1− x

K

)
− ψ(x, y).

The term ψ(x, y) expresses an amount of prey destroyed by predator population
of size y in a unit time provided that the prey population is of the size x. The
function ψ should possess the following properties:

• ψ(0, y) = 0 = ψ(x, 0) for all x, y: if no prey is available the predator destroys
none of them, if no predators are present no prey is destroyed;

• ∂ψ(x, y)

∂x
≥ 0,

∂ψ(x, y)

∂y
≥ 0 for all x, y: if more prey is available predators do

not destroy less of them, if more predators are present they do not destroy
less of prey;

• there exists a positive constant S such that ψ(x, 1) ≤ S for all x: one predator
is able to destroy a limited amount of prey, it hunts a prey until it is satisfied
and the constant S represents a level of its satiety.

One can easily verify that all of these properties are satisfied by the function

ψ(x, y) = Syϕ(x),

where ϕ is a non-decreasing function possessing properties

ϕ(0) = 0, lim
x→∞ϕ(x) = 1;

The function ϕ is called trophic function or functional response of predator to a
prey density. The function

ϕ(x) =
xk

xk + ak
,
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where a and k are positive parameters, satisfies the conditions and it is widely
used for the purpose. The parameter a expresses a size of prey population that
can “half-satisfy” one predator.

Let us assume further that if no prey is available then the predator population
starves and, consequently, it dies out; we denote the death rate by d. If predators
destroy prey they transform it to their population growth with an efficiency κ.
Hence, the evolution of the predator population size can be modeled by the
equation

y′ = −dy + κψ(x, y).

This way, we obtain the system of ordinary differential equations for the predator-
prey interaction in the form

x′ = rx
(
1− x

K

)
− Syϕ(x), (10)

y′ = −dy + κSyϕ(x), (11)

which is called the Gause-type predator-prey model.

3 Discrete time models

The basic equation (1) can be easily solved by a recursive procedure: starting
with x(0) = x0 we compute x(1) = qx(0), from x(1) we compute x(2) = qx(1)
and so on. This simple observation suggests that a convenient tool for solving a
discrete equation is a spreadsheet, in particular, the Open Office Calc. Supposing
that the cells B2 and D1 contains the values x(0) and q, respectively, we can put
the formula =$D$1*B2 to the cell B3 to obtain the value x(1) here. Then, we can
copy the cell B3 to the cells B4, B5, B6, and so on. Then, the solution can be
visualized by inserting a graph, see Fig. 1. The analogous computations can be
provided with various population models with non-overlapping generations.

Now, let us think about models of populations exhibiting an intraspecific
competition. The consideration leading to such models are similar to that pro-
vided during derivation of the Verhulst equation (3). We suppose that the growth
rate q in the equation (1) is a decreasing function of the population size x, i.e.
q = q(x), such that lim

x→0+
q(x) > 1 and there exist a population size K such that

q(x) > 1 for x < K and q(x) < 1 for x > K. The simplest choice is the linear
dependence, that is

q(x) = �− �− 1

K
x,

where � = lim
x→0+

q(x). This option leads to the equation

x(t+ 1) = x(t)

(
�− �− 1

K
x(t)

)
. (12)

Putting q = ep where p denotes the growth rate appearing in the Verhulst model,
we obtain the equation

x(t+ 1) = x(t) exp

[
r

(
1− x(t)

K

)]
. (13)
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Fig. 1. Solution of the basic equation (1) in the spreadsheet Open Office Calc.

The equation (13) appears to be more adequate as a model of population growth
that the equation (12) since it admits positive solutions only provided x(0) > 0;
to the contrary, the equation (12) yields x(1) < 0 for x(0) > K�/(�− 1) > 0.

A “spreadsheet solution” of the equation (13) is displayed on Fig. 2. It shows
that a single equation can produce solutions with various properties depending
on values of parameters. Great intrinsic growth rate r produces oscillations in
abundance; such a behavior is typical, e.g., for small rodents and it is called
r-strategy. Small rate r yields a monotone growth of population size to the value
of carrying capacity K; such behavior is called K-strategy1. The equation (13)
admits also regular oscillations; e.g., for K = 10 and r = 2.5, the population size
repeats itself every four time units after some time from beginning t = 0.

According to the considerations provided in the previous section, the com-
munities consisting of two species may be modeled by the system of difference

1 K-strategy is typical for great mammals. But for such animals, the overlapping
of generations appears always. This observation demonstrates that the ecological
strategies are not simple manifestations of population dynamic equations
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Fig. 2. Solution of the equation (13) – model of population with non-overlapping gen-
eration that exhibit an intraspecific competition. “Small” value of the intrinsic growth
rate r yields monotone solution tending to the value K (above), “large” r produces
irregular oscillations of population size (down).
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equations (recurrence formulae)

x(t+ 1) = x(t) exp (r1 − a11x(t) − a12y(t)) , (14)

y(t+ 1) = y(t) exp (r2 − a21x(t) − a22y(t)) . (15)

The signs of the parameters aij , i, j = 1, 2 determines a type of interaction be-
tween populations. If all of them are positive, the equations describe interspecific
competition of two populations exhibiting intraspecific competition. If aii > 0,
i = 1, 2 and aij < 0 for i �= j, the equations are about symbiosis of two self-
limiting populations. If aijaji < 0 for i �= j, the equations express predator-prey
interaction. Using the spreadsheet, one can experiment with the system.

Fig. 3. Solution of the system (14), (15) with the parameters r1 = 3, r2 = −0.5,
a11 = 0.3, a12 = 0.4, a21 = −0.1, a22 = 0. The system models an invasion of predators
to a territory occupied by prey population asserting an r-strategy.

Fig. 3 presents the following predator-prey model:

x(t+ 1) = x(t) exp (3− 0.3x(t)− 0.4y(t)) ,

y(t+ 1) = y(t) exp((−0.05 + 0.1x(t)) ;

here x(t) and y(t) denotes a size of the prey and of the predator population,
respectively. The population of prey without a presence of predators, i.e. with
y(t) = 0, evolves according to the equation (13) with the parameters r = r1 = 3,
K = r1/a11 = 3/0.3 = 10. That is, x(t) is the size of population modeled
on Fig. 2 down. The predators are specialized to the prey species involved to
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the model since they are not able to survive without it, r2 = −0.05 < 0. But
presence of prey population decreases the growth rate of the predator population,
−a21 = 0.1 > 0. The initial value of predator population is small, this option
models an invasion of predators to a territory occupied by the prey population.
We can see that the predator population eliminates the irregular oscillations
of the prey abundance. The both population coexists and their sizes vary in
certain limits. These variations are such that the maxima of prey abundance are
followed by the maxima of predator abundance after some time (approximately
three time units).

4 Continuous time models

The software R can be supplemented by the package deSolve for numerical
solution of differential equations. We illustrate the use of it by several examples.

4.1 Basic equation (2)

First of all, we load the library by the command

library(deSolve)

The model (2) possesses one parameter p, the growth rate. We set it to the value
1.5. Next, we need to specify the initial value, i.e. the initial size of population
x0. Let us assume that the initial population is small, x0 = 0.01:

parameters <- c(p=1.5)

state <- c(x=0.1)

The subsequent modeling step consist in setting the initial and terminal time for
solution and in specifying the time step for numerical integration of differential
equation:

time <- seq(0,5,by=0.01)

The right hand side of the equation (2) is defined by the function

ODE <- function(t,state,parameters){

with(as.list(c(state,parameters)),{dx <- p*x

list(c(dx))})}

and the numerical solution of the initial value problem is computed and stored
to the variable out by the command

out <- ode(state,time,func=ODE,parms=parameters)

Finally, we can plot the obtained solution:

plot(out[,"time"],out[,"x"],type="l",lwd=2,bty="l",

xlab="time",ylab="x")
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The result is displayed on Fig. 4 left. We can see that the solution is exponential
curve, indeed, that is the population follows the “fundamental law”. We can
also investigate the impact of parameter p value to the solution. We vary the
parameter

parameters1 <- c(p=1.1)

parameters2 <- c(p=0.5)

parameters3 <- c(p=-0.1)

parameters4 <- c(p=-1)

set the time scale and the initial value

time <- seq(0,2,by=0.01)

state <- c(x=1)

solve the equation with the specified parameters

out1 <- ode(state,time,func=ODE,parms=parameters1)

out2 <- ode(state,time,func=ODE,parms=parameters2)

out3 <- ode(state,time,func=ODE,parms=parameters3)

out4 <- ode(state,time,func=ODE,parms=parameters4)

and plot the result

plot(out1,out2,out3,out4,lty=c(1,2,3,4),lwd=2,

col="black",bty="l")

legend(0,max(out1[,"x"]),lty=c(1,2,3,4),lwd=2,

legend=c("p=1.1","p=0.5","p=-0.1","p=-1"))

The result is displayed on Fig. 4 right. No surprisingly, the solution of the equa-
tion with the parameter p = 1.1 grows unboundely, the solution with p = 0.5
grows as well but more slowly, the solutions with negative values of parameter
p tend to zero, the one with p = −1 deceases as well but more quickly.
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Fig. 4. Solution of the equation (2) with x0 = 0.1 and p = 1.5 (left) and with initial
value x0 = 1 and various values of p (right).
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4.2 Verhulst logistic equation

The equation (3) depends on two parameters r and K

parameters <- c(r=1,K=1)

the right hand side is defined by the function

ODE <- function(t,state,parameters){

with(as.list(c(state,parameters)),{dx <- r*x*(1-x/K)

list(c(dx))})}

We set time scale and the initial value x0 = 0.05 to simulate growth of a small
population:

time <- seq(0,10,by=0.1)

state1 <- c(x=0.05)

and solve the equation

out1 <- ode(state1,time,func=ODE,parms=parameters)

We also change the initial value to “a large size” of population and solve the
equation one more time

state2 <- c(x=2)

out2 <- ode(state2,time,func=ODE,parms=parameters)

The plot of solutions

plot(out1[,"time"],out1[,"x"],type="l",lwd=2,bty="l",

xlab="time",ylab="x",ylim=c(0,2))

points(out2[,"time"],out2[,"x"],type="l",lwd=2,lty=2)

we supplement with a line parallel to the time axis in the height K = 1

abline(h=1,lty=2)

From the result displayed on Fig. 5 left we can see that the small population
growth along to a S-shaped curve to the carrying capacity K = 1, the great
population decreases and it tends to the capacity K as well.

Now, we will check a impact of parameters r, K to the shape of the growth
curve. For the purpose, we set four choices of parameters and set the initial value

parameters1 <- c(r=1,K=1)

parameters2 <- c(r=1,K=2)

parameters3 <- c(r=0.5,K=1)

parameters4 <- c(r=2,K=1)

state <- c(x=0.05)

and solve the four initial value problems for the equation (3)

63



out1 <- ode(state,time,func=ODE,parms=parameters1)

out2 <- ode(state,time,func=ODE,parms=parameters2)

out3 <- ode(state,time,func=ODE,parms=parameters3)

out4 <- ode(state,time,func=ODE,parms=parameters4)

We plot the solutions

plot(out1,out2,out3,out4,lwd=2,lty=c(1,2,3,4),col="black",bty="l")

legend(0,2,lty=c(1,2,3,4),lwd=2,

legend=c("r=1, K=1","r=1, K=2","r=0.5, K=1","r=2, K=1"))

and display them on Fig. 5 right. We can see that the parameter K determines
the limit of growth of modeled population and the parameter r control a speed
of reaching the limit K. Moreover, the convergence of the population size to the
limit K is monotone. This means that populations with overlapping generations
assert a K-strategy (see comment to the equation (13) in the previous section).
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Fig. 5. Solution of the equation (3) with two different initial values x0 (left) and with
various values of parameters r, K (right).

4.3 Lotka-Volterra two-species systems

A Lotka-Volterra model (8) of two interacting species is of the form

x′1 = x1 (r1 − a11x1 − a12x2) ,
x′2 = x2 (r2 − a21x1 − a22x2) .

The right hand side of the two dimensional system in the R-language environ-
ment is given by the function

LotkaVolterra <- function(t,state,parameters){

with(as.list(c(state,parameters)),{

dx1 <- x1*(r1-a11*x1-a12*x2)

dx2 <- x2*(r2-a21*x1-a22*x2)

list(c(dx1,dx2))})}
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Let us consider the interspecific competition of two population exhibiting the
intraspecific competition. That is, all of parameters aij , i, j = 1, 2 are positive.
Let both the population have the same growth rate and carrying capacity pro-
vided they are isolated, r1 = r2, a11 = a22, and let they differ in “strength of
competition pressure”, a12, a21. Hence, we set four different sets of the system
parameters and initial values

parameters1 <- c(r1=1,r2=1,a11=1,a12=0.8,a22=1,a21=0.5)

state1 <- c(x1=0.01,x2=0.01)

parameters2 <- c(r1=1,r2=1,a11=1,a12=1.25,a22=1,a21=0.5)

state2 <- c(x1=1,x2=0.01)

parameters3 <- c(r1=1,r2=1,a11=1,a12=1.25,a22=1,a21=1.2)

state3 <- c(x1=1,x2=1)

parameters4 <- c(r1=1,r2=1,a11=1,a12=1.25,a22=1,a21=1.2)

state4 <- c(x1=0.02,x2=0.01)

The first choice represents mild interspecific competition and a situation when
two small populations colonize a territory. The second one models an invasion of
a population to a territory occupied by a resident population and the invading
population x2 exhibit strong competitive pressure a12 to the resident popula-
tion x1 whilst it exhibit only mild competitive pressure a21. The third and the
fourth choices model competition of the populations with strong interspecific
competition. One choice describes disappearance of a barrier between two niches
occupied by the two population, the other invasion of the two population to a
vacant territory.

The time scale for the four simulations can be common:

time <- seq(0,30,by=0.1)

The solutions of the initial value problems are obtained by the commands

out1 <- ode(state1,time,func=LotkaVolterra,parms=parameters1)

out2 <- ode(state2,time,func=LotkaVolterra,parms=parameters2)

out3 <- ode(state3,time,func=LotkaVolterra,parms=parameters3)

out4 <- ode(state4,time,func=LotkaVolterra,parms=parameters4)

and they are plotted to one figure:

split.screen(c(2,2))

screen(1)

plot(out1[,"time"],out1[,"x1"],type="l",lwd=2,bty="l",

ylim=c(0,max(out1[,"x1"],out1[,"x2"])),

xlab="time",ylab=expression(list(x[1],x[2])),

main="a_12 = 0.8, a_21 = 0.5")

points(out1[,"time"],out1[,"x2"],type="l",lwd=2,lty=2)

screen(2)

plot(out2[,"time"],out2[,"x1"],type="l",lwd=2,bty="l",

ylim=c(0,max(out2[,"x1"],out2[,"x2"])),
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xlab="time",ylab=expression(list(x[1],x[2])),

main="a_12 = 1.25, a_21 = 0.5")

points(out2[,"time"],out2[,"x2"],type="l",lwd=2,lty=2)

screen(3)

plot(out3[,"time"],out3[,"x1"],type="l",lwd=2,bty="l",

ylim=c(0,max(out3[,"x1"],out3[,"x2"])),

xlab="time",ylab=expression(list(x[1],x[2])),

main="a_12 = 0.8, a_21 = 1.2")

points(out3[,"time"],out3[,"x2"],type="l",lwd=2,lty=2)

screen(4)

plot(out4[,"time"],out4[,"x1"],type="l",lwd=2,bty="l",

ylim=c(0,max(out4[,"x1"],out4[,"x2"])),

xlab="time",ylab=expression(list(x[1],x[2])),

main="a_12 = 1.25, a_21 = 1.2")

points(out4[,"time"],out4[,"x2"],type="l",lwd=2,lty=2)

close.screen(all=TRUE)
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Fig. 6. Solution of the system (8) with n = 2, r1 = r2 = K1 = K2 = 1 and various
values of interaction parameters a12, a21 and initial values: a12 = 0.8, a21 = 0.5,
x1(0) = 0.01, x2(0) = 0.01 (upper left); a12 = 1.25, a21 = 0.5, x1(0) = 1, x2(0) = 0.01
(upper right); a12 = 0.8, a21 = 1.2, x1(0) = 1, x2(0) = 1 (down left); a12 = 1.25,
a21 = 1.2, x1(0) = 0.02, x2(0) = 0.01 (down right). Solid line: x1(t), dotted line: x2(t).
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The result is displayed on Fig. 6. We can see that the populations exhibiting mild
interspecific competition can coexist with sizes less than state of equilibrium for
each of them being isolated. A population putting strong competitive pressure
excludes a population exerting a mild one. If the both populations exhibits strong
competitive pressure then one of them excludes the other, but it depends on
the initial sizes of the populations which one of them goes to extinction, the
competitive pressures does not determine it.

Now, we will simulate the predator-prey interaction. Let us suppose that the
prey population exhibits an intraspecific competition and that the predator is
specialized on it, that is the predator population goes to extinction if no prey
is available. The predator population exhibits neither intraspecific competition
nor cooperation. Hence, the model (8) takes the form

x′ = x(r − a11x)− a12xy, (16)

y′ = −dy + a21xy, (17)

where x and y denote a size of the prey and of the predator populations, respec-
tively, and all of the parameters are positive. We solve the system simply by two
commands

time <- seq(0,40,by=0.1)

out1 <- ode(c(x1=1,x2=0.01),time,

func=LotkaVolterra,

parms=c(r1=1,a11=1,a12=1,r2=-0.5,a21=-0.8,a22=0))

i.e. we model an invasion of predators to a territory occupied by the prey popu-
lation. The result is plotted on Fig. 7 left. The predator population survives in
the territory and it diminish the size of prey population.

Now, we can put a question whether predators are able to control a size of
pray population without an intraspecific competition, i.e. without a self-limiting
mechanism. In other words, we check the system

x′ = rx − a12xy, (18)

y′ = −dy + a21xy. (19)

We obtain its solution by the command

out2 <- ode(c(x1=0.5,x2=0.5),time,

func=LotkaVolterra,

parms=c(r1=1,a11=0,a12=1,r2=-0.5,a21=-0.8,a22=0))

The result displayed on Fig. 7 right shows that sizes of the both populations os-
cillate between certain extreme values; maxima of prey abundances are followed
by maxima of that of predators.

4.4 Gause-type predator-prey model

The system (10), (11) contains five numerical parameters r,K, S, d, κ and one
functional parameter – trophic function ϕ. Hence, we first need to specify the
function ϕ:
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Fig. 7. Solution of the Lotka-Volterra predator-prey model; solid line represents prey
abundance, dotted line represents predator abundance. Left: the system (16), (17) with
r = a11 = a12 = 1, d = 0.5, a21 = 0.8, x(0) = 1, y(0) = 0.01. Right: the system (18),
(19) with r = a12 = 1, d = 0.5, a21 = 0.8, x(0) = 1, y(0) = 0.01.

phi <- function(x){x/(x+0.1)}

The right hand sides of the equations (10), (11) can be evaluated by the function:

Gause <- function(t,state,parameters){

with(as.list(c(state,parameters)),{pom <- S*y*phi(x)

dx <- r*x-b*x^2-pom

dy <- -d*y+kappa*pom

list(c(dx,dy))})}

First, we set the parameter values to r = K = S = 1, d = 0.5, κ = 0.6 and
the initial values to x(0) = 1, y(0) = 0.01. Such option models invasion of a
predator population to an environment occupied by a prey population. We solve
the initial value problem

time <- seq(0,200,by=0.1)

out1 <- ode(c(x=1,y=0.01),time,func=Gause,

parms=c(r=1,b=1,S=1,d=0.5,kappa=0.6))

and plot the obtained solution to Fig. 8 upper left. We see that the sizes of the
both populations tends to certain values with dumped oscillations.

Now, we slightly change the value of prey carrying capacity to the value
K = 0.8 (hence b = r/K = 1.25):

out2 <- ode(c(x=0.8,y=0.01),time,func=Gause,

parms=c(r=1,b=1.25,S=1,d=0.5,kappa=0.6))

and plot the solution to Fig. 8 upper right. The solution achieves the stabilized
values monotone, without any oscillations. The third choice consists in expansion
of the prey carrying capacity to the value K = 1.25:

out3 <- ode(c(x=1.25,y=0.01),time,func=Gause,

parms=c(r=1,b=0.8,S=1,d=0.5,kappa=0.6))
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The solution is plotted on Fig. 8 down left. The sizes of the both populations
oscillates about certain values, the maxima of prey population precedes the max-
ima of the predator one. The simulations presented one example of the so called
“paradox of enrichment”: an increase of carrying capacity (enrichment of re-
sources for the producer population) may destabilize a community.

Finally, we let the values of parameters and set the initial values near the
average abundances of prey and predator populations obtained from the former
solution:

out4 <- ode(c(x=mean(out3[,"x"]),y=mean(out3[,"y"])),time,

func=Gause,parms=c(r=1,b=0.8,S=1,d=0.5,kappa=0.6))

The result plotted on Fig. 8 down right is very similar to the previous one. The
sizes of populations tends to the same oscillation as in the previous case.
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Fig. 8. Solution of the Gause-type predator-prey model (10), (11) with the parameters
r = S = 1, d = 0.5, κ = 0.6 and the trophic function ϕ(x) = x/(x + 0.1). Prey
abundance is plotted by the solid line, predator abundance by the dotted line. Carrying
capacity for the prey population varies: K = 1 (above left), K = 0.8 (above right),
K = 1.25 (down). The solutions plotted down differs in initial values only.

4.5 Coexistence of three populations

Let us consider a community consisting of three self-supporting species that
exhibit mutual interspecific competition and intraspecific competition as well.
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Such a community can be modeled by the three dimensional Lotka-Volterra
system

x′1 = x1 (r1 − a11x1 − a12x2 − a13x3) ,
x′2 = x2 (r2 − a21x1 − a22x2 − a23x3) ,
x′3 = x3 (r3 − a31x1 − a32x2 − a23x3) ,

where all of the parameters are positive. We choice the parameters such that
all of the growth rates ri and all of the intraspecific competition coefficients aii
equal unity and the parameters of interspecific competition satisfy the conditions

a12 > 1 > a21, a13 < 1 < a31, a23 > 1 > a32.

These inequalities imply that none of the two-species sub-community cannot
persist; the first population would exclude the second one, the second population
would exclude the third one and the third population would exclude the first one
(see simulation provided in the subsection 4.3). We will simulate an invasion of
three such species to a vacant territory. The system is solved and the solution is
plotted by the following R-language script:

LotkaVolterra <- function(t,state,parameters){

with(as.list(c(state,parameters)),{

dx1 <- x1*(r1-a11*x1-a12*x2-a13*x3)

dx2 <- x2*(r2-a21*x1-a22*x2-a23*x3)

dx3 <- x3*(r3-a31*x1-a32*x2-a33*x3)

list(c(dx1,dx2,dx3))})}

parameters <- c(r1=1,a11=1,a12=1.25,a13=0.8,r2=1,a22=1,

a21=0.5,a23=1.2,r3=1,a33=1,a31=1.2,a32=0.9)

state <- c(x1=0.05,x2=0.05,x3=0.05)

time=seq(0,150,by=0.1)

out <- ode(state,time,func=LotkaVolterra,parms=parameters)

yl <- 1.15*max(out[,"x1"],out[,"x2"],out[,"x3"])

plot(time,out[,"x1"],type="l",lwd=2,bty="l",ylim=c(0,yl),

xlab="time",ylab=expression(list(x[1],x[2],x[3])))

points(time,out[,"x2"],type="l",lwd=2,lty=2)

points(time,out[,"x3"],type="l",lwd=2,lty=3)

legend(0,yl,lwd=c(2,2,2),lty=c(1,2,3),yjust=0.5,horiz=TRUE,

legend=c(expression(x[1]),expression(x[2]),

expression(x[3])))

The solution is displayed on Fig. 9 left. All of the three populations persist and
their abundances oscillate about certain values. Hence, this community can serve
as an example of the phenomenon that an increasing complexity leads to larger
stability.

We conclude considerations on population models by simulation of a com-
munity consisting of a predator feeding on two prey populations linked by com-
petition. Such a community can be modeled by the following system of ordinary
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Fig. 9. Left: solution of the Lotka-Volterra model of three competing species; an ex-
ample of stability arising from complexity. Right: solution of model of predator feeding
on two competing species; an example of predator mediated coexistence.

differential equations:

x′1 = x1 (r1− a11x1 − a12x2)− S1yϕ1(x1),

x′2 = x2 (r2− a21x1 − a22x2)− S2yϕ2(x2),

y′ = −dy + κ1S1yϕ1(x1) + κ2S2yϕ2(x2).

Here, x1 and x2 denote sizes of the prey populations, y a size of predator
population. The sub-community formed by the two prey populations evolves
according to the two-dimensional competitive Lotka-Volterra system. Each of
the two predator-prey sub-communities evolves like Gause-type predator-prey
system. Let us assume that the competitive subsystem is such that the first
population excludes the second one, that is a12 < 1 < a21 provided that
r1 = r2 = a11 = a22 = 1. Let the functional response of predator to the first
and to the second prey population be of the form

ϕ1(x1) =
x1

x1 + a1
, and ϕ2(x2) =

x22
x22 + a2

,

respectively. We simulate a situation where all of the three populations invade
to a vacant territory by the following script:

phi1 <- function(x){x/(x+0.1)}

phi2 <- function(x){x^2/(x^2+0.1)}

P2P <- function(t,state,parameters){

with(as.list(c(state,parameters)),{

F1x <- phi1(x1)

F2x <- phi2(x2)

dx1 <- x1*(r1-a11*x1-a12*x2)-S1*y*F1x

dx2 <- x2*(r2-a21*x1-a22*x2)-S2*y*F2x

dy <- y*(-d+kappa1*S1*F1x+kappa2*S2*F2x)

list(c(dx1,dx2,dy))})}

time=seq(0,200,by=0.1)
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out <- ode(c(x1=0.01,x2=0.01,y=0.01),

time,func=P2P,

parms=c(r1=1,a11=1,a12=0.5,r2=1,a22=1,a21=1.8,

d=0.5,S1=1,S2=0.1,kappa1=0.9,kappa2=0.5))

yl <- 1.15*max(out[,"x1"],out[,"x2"],out[,"y"],na.rm=TRUE)

plot(time,out[,"x1"],type="l",lwd=2,bty="l",ylim=c(0,yl),

xlab="time",ylab=expression(list(x[1],x[2],y)))

points(time,out[,"x2"],type="l",lwd=2,lty=2)

points(time,out[,"y"],type="l",lwd=2,lty=3)

legend(0,yl,lwd=c(2,2,2),lty=c(1,2,3),yjust=0.5,horiz=TRUE,

legend=c(expression(x[1]),expression(x[2]),

expression(y)))

The result is plotted on Fig. 9 right. We see the coexistence of the three pop-
ulations, their abundances oscillate. This is an example of predator mediated
coexistence of competing species. The second prey population would be excluded
by the first one but with presence of predator the both competing populations
survives. This means, that the predator is in a sense obligatory mutualist of its
prey.
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Abstract. The following article deals with a family of diversity measure
functions known as traditional measures of diversity. We deal with sample
estimates of traditional measures of diversity, we develop a new estimator
and compare its behavior to two established estimators in a simulation
study. We also introduce a function that can be used to evaluate the
sensitivity of a given diversity measure to changes in a population.

1 Introduction

This paper is devoted to a family of diversity measures called traditional mea-
sures of diversity. This family consists of the diversity measures that are functions
of the probabilities (p1, . . . , pr) = p, where pi denotes the probability that the
investigated feature in an individual randomly chosen from a given population
belongs to the class i. Let the number of classes r ∈ N be known. We denote the
domain of p as Δr, i.e.

Δr =

{
(p1, . . . , pr) :

r∑
i=1

pi = 1, pi ≥ 0 ∀ i
}
.

Denote dr
j the vector (0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0) ∈ Δr. A traditional measure of diver-

sity H should also satisfy that H(dr
1) ≥ 0 and H is a Schur-concave function.

As was shown in Horáček (2009), these two properties ensure that H(p) is sym-
metric, nonnegative, H(p) is minimal when p = dr

1 and maximal when pj are
identical, equal to 1/r for all j.

Most of the traditional measures of diversity are related to the f -entropies
proposed by Zvárová (1974) and furter studied in Zvárová, Vajda (2006).

� This work was supported by the project 1M06014 of the Ministry of Education,
Youth and Sports of the Czech Republic.
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2 Traditional Measures of Diversity

In this section we introduce some of the most common traditional diversity
measures like Simpson’s index, Shannon’s entropy, Renyi’s entropy of order α,
Hill’s index and others. Further we study sample estimates of selected traditional
measures of diversity.

2.1 The Most Common Traditional Measures of Diversity.

The most often mentioned and used diversity measures include the number of
alleles (or species)

H0(p) =

r∑
i=1

I(0,1](pi)− 1,

the Simpson’s index

H2(p) = 1−
r∑

i=1

p2i

and the Shannon’s entropy

H1(p) = −
r∑

i=1:pi>0

pi ln pi.

These three indices are generalized by the family of power entropies

Hα(p) = (α− 1)−1

(
1−

r∑
i=1

pαi

)
, when α > 0, α �= 1,

defined as limits when α = 0 (number of alleles) and α = 1 (Shannon’s entropy).
When α = 2, we get the Simpson’s index.

Another frequently mentioned and used indices include the γ-entropic func-
tion

HA(γ)(p) = (1− γ)−1

[
1−

(
r∑

i=1

p
1/γ
i

)γ]
, when γ > 0, γ �= 1,

Hill’s index

HH(α)(p) =

(
r∑

i=1

pαi

) 1
1−α

, when α > 0, α �= 1

and Rényi’s entropy of order α

HR(α)(p) = (1− α)−1 ln

(
r∑

i=1

pαi

)
, when α > 0, α �= 1.
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2.2 Sample Estimates of Traditional Measures of Diversity

Let p = {pi, . . . , pr} ∈ Δr be a vector of unknown probabilities pi that a ran-
domly chosen individual has allele of type Ai on a given locus. For the sake
of simplicity, assume that there is only one allele on every locus. We deal with
estimates of a diversity function in the form

H(p) = F

(
r∑

i=1

h(pi)

)
,

where F and h are an arbitrary continuous functions. The estimate is done on
the basis of relative frequencies p̂n = (X1/n, . . . , Xr/n) = (p̂i, . . . , p̂r) of alleles
observed in a sample of n individuals selected from the population randomly
with replacement. In that case, the cumulative distribution of the vector X =
(X1, . . . , Xr) is multinomial M(n,p).

The most commonly used estimator, often called ”plug-in” estimator, con-
sists in simply replacing the unknown probabilities pi with the observed relative
frequencies p̂i. However, despite p̂i is an unbiased estimate of pi, the plug-in
estimator is generally not unbiased.

Sometimes, the bias could be easily corrected. For example, the mean value
of the plug-in estimate of Simpson’s index is

EH2(p̂n) = 1− n−2
r∑

i=1

EX2
i = 1− n−2

r∑
i=1

[
varXi + (EXi)

2
]

= 1− n−2
r∑

i=1

[
npi(1− pi) + n2p2i

]

=
(
1− n−1

)
H2(p).

Thus, the unbiased estimate of Simpson’s index is given by

Ĥ2(p̂n) = n(n− 1)−1H2(p̂n).

However, it often difficult to find an unbiased estimate of other diversity mea-
sure functions. For example, it can be shown that Shannon’s index doesn’t have
an unbiased estimate (Blyth 1959). Hence, several authors dealt with this prob-
lem and suggested more sophisticated estimators. We start from the estimator
proposed by Bonachela et al. (2008) that is called the balanced estimator. We
suggest a modification of this estimator that takes into account the likely distri-
bution of values of pi in the interval [0, 1].

Bonachela et al. proposed their estimator in the form

Ĥ(X) = F

(
r∑

i=1

ζ(Xi)

)
,

where the function ζ is chosen to minimize

Φ2
ζ(pi) = [E(ζ(Xi)− h(pi))]

2 + var(ζ(Xi))
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possibly weighed by a function w(pi) when we have some prior knowledge about
the distribution of values pi ∈ [0, 1]. This way, if we ignore the possible influence
of the function F and the correlations, we can simultaneously reduce the variance
and the square of bias of the estimate. The weighted average error is then given
by

Φ̄2
ζ(pi) =

∫ 1

0

Φ2
ζ(pi)w(pi)dpi. (1)

The necessary condition for minimality is a zero value of the derivations

δ

δζ(k)
Φ̄2
ζ(pi) = 0, k ∈ {0, . . . , n} .

Therefore, we choose such ζ that

δ

δζ(k)

∫ 1

0

[
h2(pi)−2h(pi)

n∑
j=0

P (Xi = j)ζ(j)+

n∑
j=0

P (Xi = j)ζ2(j)
]
w(pi)dpi = 0

which can be simplified to

∫ 1

0

[
ζ(k)P (Xi = k)− h(pi)P (Xi = k)

]
w(pi)dpi = 0.

If we use the relation

P (Xi = k) =

(
n

k

)
pki (1− pi)

n−k,

we get

ζ(k) =

∫ 1

0
h(pi)w(pi)

(
n
k

)
pki (1− pi)

n−kdpi∫ 1

0
w(pi)

(
n
k

)
pki (1− pi)n−kdpi

. (2)

Bonachela et al. (2008) derived the form of balanced estimator for Shannon’s
and power entropies with the weight function equal to 1 on the whole interval
[0, 1] of possible values of pi. However, this choice doesn’t reflect the distribution
of values pi very well for r > 2. When r >> 2, most pi: i ∈ {1, . . . , r} are very
small and only one pi can be possibly greater than 0.5.

Based on this reasoning, we suggest to choose the weight function w(pi)
proportionally to the marginal density of random variable Y1 when the corre-
sponding random vector Y = (Y1, . . . , Yr) is uniformly distributed on Δr.

This marginal density is proportional to

f(y1) ∝
∫ 1−y1

0

. . .

∫ 1−y1−...−yr−2

0

dyr−1 . . . dy2

=
(1− y1)

r−2

(r − 2)!
,
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which is (outside a multiplicative constant) a density of Beta distribution B(1, r−
1).

We found the ζ function that minimizes (1) with w(pi) chosen as (1− pi)r−2

and we derived the corresponding estimator. We call this new estimator a β-
estimator. We describe the derivation of the β-estimator for Shannon’s entropy,
i.e. when h(pi) = −pi ln pi and F (x) = x. The symbols Γ, B and Ψ denote the
Gamma, Beta and Digamma functions, respectively.

First, replace h(pi) and w(pi) with the appropriate forms and calculate the
integral in the denominator of equation (2)

ζ(Xi) =

∫ 1

0
h(pi)p

Xi
i (1− pi)

n−Xi+r−2dpi

B(Xi + 1, n−Xi + r − 1)
.

The partial derivation of Beta function satisfies

δ

δx
B(x, y) = B(x, y)[Ψ(x)− Ψ(x+ y)],

and the numerator can be expressed as∫ 1

0

h(pi)p
Xi
i (1− pi)

n−Xi+r−2dpi

=−
∫ 1

0

pi ln(pi)p
Xi
i (1− pi)

n−Xi+r−2dpi

=− lim
α→0

∫ 1

0

pαi − 1

α
pXi+1
i (1− pi)

n−Xi+r−2dpi

= lim
α→0

1

α
[B(Xi + 2, n−Xi + r − 1)−B(Xi + α+ 2, n−Xi + r − 1)]

=B(Xi + 2, n−Xi + r − 1)[Ψ(n+ r + 1)− Ψ(Xi + 2)].

Therefore, the ζ function follows

ζ(Xi) =
Xi + 1

n+ r
[Ψ(n+ r + 1)− Ψ(Xi + 2)]

=
Xi + 1

n+ r

n+r∑
k=Xi+2

1

k

and the β-estimator of Shannon’s entropy is

Ĥ(X) =

r∑
i=1

Xi + 1

n+ r

n+r∑
k=Xi+2

1

k
.

The β-estimate for power entropies, whose satisfy F (x) = x and h(pi) = (α −
1)−1 (pi − pαi ), could be calculated in a similar manner. With the weight function
chosen as w(pi) = (1− pi)

r−2, the β-estimator of power entropies satisfies

Ĥα(X) = (α− 1)−1

[
1−

r∑
i=1

B(n+ r, α)

B(Xi + 1, α)

]
.
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On Fig. 1 to Fig. 2, we can see a comparison of the β-estimator, Bonachela’s
original balanced estimator and the plug-in estimator in a population with 6
possible different alleles distributed as p = (24/50, 11/50, 9/50, 3/50, 2/50, 1/50).
The figures show the average sample mean and sample variance computed out
of 300 trials. The figures were done in R (2011). Generally, when r > 2 and the
probabilities pi are not all equal or nearly equal, the β-estimator has a lesser
bias and a lower variance than the other two estimators.
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Fig. 1. The average sample mean and sample variance of estimate of power entropy
H3/2 given a sample size.

3 Sensitivity to Changes

The indices used to measure genetic diversity differ more or less in their qualities.
Their characteristic that is frequently of interest is the rate of the change in value
of diversity measure connected to changes in frequencies of alleles of a chosen
gene. Several authors dealt with this problem, namely Boyle et al. (1990), who
were interested mostly in the empirical results, and Izsak (1996), who tried to
construct a sensitivity measure on a theoretical background. On the suggestion of
I. Vajda, we propose a sensitivity measure that is similar as the Izsak sensitivity,
but is easier to compute and has a clearer interpretation.

Define the sensitivity of diversity measure H to changes in the j-th group as

SH(p|dr
j) = lim

ε→0+
rpj

H((1− ε)p+ εdr
j)−H(p)

ε
.

Calculated this way, if the sensitivity to changes of a diversity measure H in a j-
th allele A SH(p|dr

j) is 3 times greater than the sensitivity to changes SH(p|dr
k)

in a k-th allele B, it means that a small, say a 10% increase in the frequency
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Fig. 2. The average sample mean and sample variance of estimate of Shannon’s entropy
H1 given a sample size.

of allele A results in about 3 times greater change of value of H than a 10%
increase in the frequency of allele B.

3.1 Sensitivity of Power and Renyi’s Entropies

We have derived the form of sensitivity function for several traditional diversity
measures in Horáček (2009). Here we present the sensitivity of power entropies
and of the Renyi’s entropy of order α. If all pi > 0, the sensitivity of power
entropies satisfies

SHα(p|dr
j) =

α

α− 1

r∑
i=1

pα−1
i (pi − δij)

when α �= 1, and

SH1
(p|dr

j) =
α

α− 1

where δij = 1 iff i = j, otherwise δij = 0. The sensitivity of Renyi’s entropy
equals to

SHR(α)
(p|dr

j) =
α

1− α

∑r
i=1 p

α−1
i (δij − pi)∑r
i=1 p

α
i

.

If we choose to compare sensitivities of different diversity indices, it is suitable to
normalize them to a common scale. The most natural way to do this is to divide
them by [max(H) − min(H)], where max(H) (resp. min(H)) is the maximal
(minimal) value of corresponding diversity index H on Δr. We call the quantity

SH(p|dr
j)

max(H)−min(H)
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the relative sensitivity (of diversity measure H to changes in the j-th group).
A comparison of the relative sensitivity of various power entropies and of

Renyi’s entropies in a population with p = (24/50, 11/50, 9/50, 3/50, 2/50, 1/50)
is shown in Fig. 3. We can see for example that with increasing α, Renyi’s entropy
seems to be more responsive to relative changes in the more frequent alleles, but
less sensitive to relative changes in the less frequent alleles. This behavior could
influence the choice of diversity index for a given problem.
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Fig. 3. Comparison of the sensitivity to changes of power entropies

4 Conclusions

We dealt with the traditional measures of diversity and investigated some of their
properties. We introduced a new estimator of traditional diversity measures and
we showed that it compares favorably to two established estimators, namely
to the plug-in estimator and to the balanced estimator proposed Bonachela et
al. (2008). We also presented a new way to measure sensitivity of measures of
diversity to changes thet could be helpful when we want to select an appropriate
measure of diversity for a given study.
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Bonachela, J. A., Hinrichsen, H., Muñoz, M. A.: Entropy estimates of small data sets.

J. of Phys. A: Math. and Theor. 41 (2008) 1–9
Boyle, T. P., Smillie, G. M., Anderson, J. C., and Beeson, D. R.: A sensitivity analysis

of nine diversity and seven similarity indices. Research Journal Water Pollution
Control Federation 62 (1990) 749–762

Izsak, J.: Sensitivity Profiles of Diversity Indices. Biom. J. 38 (1996) 921–930
Horáček, M.: Measures of biodiversity and their applications. Master thesis, Charles

university, Prague, supervisor J. Zvárová (2009)
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Abstract. The ecological status assessment of surface waters, required by the 
Directive 2000/60/EC, is based on the analyses of various biological quality 
elements (fishes, benthic macroinvertebrates etc.). The biological diversity 
analyses play an important role in the assessment system supporting the 
construction of surface water types which serves as a frame for the type specific 
assessment and primarily, the classification of the status is based on metrics 
which reflects taxonomical or functional diversity of biological quality 
elements. The background of the assessment system and examples of suitable 
metrics are presented.  

Keywords: taxonomic diversity, functional diversity, metrics, diversity indices 

1   Introduction 

Water is an essential component of all ecosystems and there is no doubt about 
its importance for humankind. The quality of water is of the same importance 
as its quantity and accessibility and the attention is paid to these aspects 
globally. Within the European Union the principles of water policy incl. the 
protection of aquatic ecosystems are defined in the Directive 2000/60/EC of 
the European Parliament and of the Council of 23 October 2000 establishing a 
framework for Community action in the field of water policy (Water 
Framework Directive - WFD) [1]. The directive deals with all types of 
continental waters and emphasizes biological and ecological aspects in the 
status assessment and in management generally.  Among other things, the 
directive requires each Member State to assess the ecological status of surface 
waters within units called water bodies. The status should be classified using 
five classes (high, good, moderate, poor, and bad). The classification is based 
on the comparison with a reference status (status with the minimal 
anthropogenic impact). 

The ecological status assessment is based on the analysis of various 
biological quality elements (e.g. phytobenthos, macrophytes, benthic 
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macroinvertebrates, and fishes). High ecological status is defined separately 
for each of these elements. The following definition is used for benthic 
macroinvertebrates:  

� The taxonomic composition and abundance correspond totally or 
nearly totally to undisturbed conditions. 

� The ratio of disturbance sensitive taxa to insensitive taxa shows no 
signs of alteration from undisturbed levels. 

� The level of diversity of invertebrate taxa shows no sign of alteration 
from undisturbed levels. 

 
Metrics are used to assess the status of biological quality elements. Metric 

is a measurable part or process of a biological system empirically shown to 
change in value along a gradient of human influence. It reflects specific and 
predictable responses of the community to human activities, either to a single 
factor or to the cumulative effects of all events and activities within a 
watershed [2].  

Only metrics capable of discriminating between “stressed” and 
“unstressed” conditions are used. Metrics that clearly respond to specific 
pollutants or stressors are most useful as a diagnostic tool. Furthermore, the 
metrics used should cover diverse aspects of structure, composition, health 
and function of the aquatic biota.  

Metrics are combined in multimetric indices (MMI). Before being used for 
the Multimetric Index, each metric result must be transferred into a value 
between 0 and 1. For a detailed description of the multimetric approach see 
[3] and [2].The value of the MMI is used for the classification of the water 
body – i.e. for its assignment to the ecological status class. 

The WFD requires so called type-specific approach. Types of surface 
waters are defined by abiotic environmental variables (e.g. altitude, size, 
geology etc.). These abiotic water types should be relevant to characteristic 
species assemblages.  

Biological diversity is therefore reflected both in setting a framework for 
the evaluation (types) and the actual assessment of water status.  

2   Taxonomic and functional diversity 

Biological diversity can by analysed at different levels. Species (or higher 
taxa) level in terms of species richness and species diversity is used for the 
assessment of ecological status of water bodies. Beside this evaluation 
oriented on the taxonomic units, the functional composition is analysed: each 
species can be assigned to the functional group according to its specific 
characteristics or preferences (traits), e.g. to the functional feeding groups 
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such as predators or grazers. Trait is a well-defined, measurable property of 
organisms, usually measured at the individual level and used comparatively 
across species. A functional trait is one that strongly influences organismal 
performance [4]. Relative abundances of functional trait attributes within a 
sample of a biological quality element are usually used for the assessment of 
ecological status (e.g. the share of predators within the sample of benthic 
macroinvertebrates). Traits are linked to various environmental gradients, e.g. 
temperature gradient (maximal body size, fecundity, time of emergence of 
insects etc.); hydrologic gradient (rheophily, body shape, oviposition etc.); 
chemical gradient (e.g. respiration type). Traits can be common within the 
higher taxa, usually at the level of genera, which could bring a big advantage 
of the trait approach, the reduced necessity of precise species identification. 
Unfortunately, it is not true in general and, therefore, the combination of 
metrics based on both taxonomic and functional structure and identification at 
the species level (if possible) is the optimal solution for the assessment of 
ecological status.   

3   Typology, type-specific assessment and reference conditions 

The type specific approach required by the WFD means that the reference 
status should be defined for individual water body types (a small stream at 
higher altitude differs fundamentally from a large lowland river). Waters 
should be split into a reasonable number of types. The types are delimited 
geographically (e.g. by ecoregions or sea drainage basins) and defined by the 
combination of several environmental variables. Each variable is divided into 
several categories (e.g. three or four categories are used for altitude). Metric 
values related to the species assemblages in reference status should have 
minimal variability within a type and should be different from those in other 
types.  

Information on biological diversity (taxonomic and functional) is used for 
the development of the typology, both for the selection of suitable 
environmental variables and their categorisation and for the verification of 
intra-type and inter-type variability. The selection of appropriate variables is 
done using different methods such as Principal Component Analysis or SEM 
analysis. The categorisation of environment variables represents an effort to 
identify those parts of the gradient in which important changes in biodiversity 
and/or metrics usually occur. Proposed abiotic typologies should be compared 
with the classifications of communities according to their taxonomic and/or 
functional structure. The similarity of both approaches is desirable.  

The defined types form a basis for the definition of the reference conditions 
that are optimally derived from real data from pristine sites. If such data sets 
do not exist, modelling or expert judgement can be used.  
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The classification of the ecological status is set within the types, too. There 
are two important boundaries: the high/good status boundary which is 
essential for the definition of reference conditions, and the good/moderate 
status boundary which is of high practical importance – the objective of water 
management is to achieve at least good status of all waters and, therefore, the 
results of the classification of water status determine management actions. 

4   Metrics used for the ecological status assessment  

The metrics based on benthic macroinvertebrates as a frequently used 
biological element are used here. The following metric types can be 
distinguished (for formulas see [5]):  
(i) Composition/abundance metrics: all metrics giving the share of a taxon or 

taxonomic group in relation to the total number of individuals counted, all 
metrics giving the abundance of a taxon or taxonomic group, metrics 
comparing reference and observed taxa (e.g. similarity indices). 
The percentage of abundance of three families - Ephemeroptera, 
Plecoptera, Trichoptera and percentage of Plecoptera are the 
composition/abundance metrics usually best correlating to 
hydromorphological parameters [6]. The decrease indicates mainly 
various habitat losses, absence of stabile substrata etc.  

(ii)  Richness/diversity metrics: all metrics giving the number of taxa within a 
certain taxon (including the total number of taxa), all diversity indices 
(e.g. Shannon-Wiener index or Margalef index).  
Among the richness/diversity metrics the number of Plecoptera taxa and 
number EPT taxa generally correlates to hydromorphological parameters 
and also the Shannon-Wiener index is well correlated to them [6] as well 
as to general degradation. 

(iii) Sensitivity/tolerance metrics: all metrics giving the ratio of taxa sensitive 
and insensitive to stress in general or to a certain stress-type, either using 
presence/absence or abundance information, e.g. saprobic index which 
reflects an intensity of organic pollution. 

(iv) Functional metrics: all metrics addressing the characteristics of taxa other 
than their taxonomic definition (biological or ecological traits, ecological 
guilds): feeding types, habitat preferences, ecosystem type preferences, 
current preferences, life-history parameters, body-size parameters; they 
can be based on taxa abundance or richness; e.g. RETI (Rhithron Feeding 
Type Index - based on proportion of trophic guilds in a sample). The 
longitudinal zonation measures or RETI are well correlated with 
hydrological impact like influence of large dams and current preference 
measures correlates usually to hydromorphological parameters too.  
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For examples of metrics which are actually used in the Czech Republic see 
[7]. 

5   Significance of biodiversity for the surface water management  

Biological diversity has an important role for the surface water management 
in intentions of Water Framework Directive. The analyses of biodiversity 
support construction of surface water types (typology) which serves as a 
frame for type specific assessment of status. The classification of the 
ecological status is based on metrics which predominantly reflects 
taxonomical or functional diversity of biological quality elements. The results 
of the classification of water status determine management actions which 
should lead through six-year river basin management plans to gradual 
improvement of our environment. 
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Abstract. The objective of this study was to assess the importance of the 
vegetation structure for the individual levels of the Czech forest site 
classification system (CFSCS) and classify samples from the database of these 
units. By using species, a classification analysis was carried out by applying the 
Random Forests method on all CFSCS levels. From the analysis results it can 
be determined which typological units are well defined in terms of vegetation 
and which overlap. 

Keywords: Czech forest site classification system, Random Forests 

1   Introduction 

Forest site classification was created and serves as the basis for determining forest 
management measures in forests as well as operating and manufacturing targets 
through Forest Management Plans and Guidelines. Its significance grew even further 
in the new political and environmental relations (after 1989) when it also became the 
basis for forest ecosystem assessments, forest valuation and for framing caretaking 
plans for areas subject to special protection [1]. 

Forest Typology, being an important component of forest management throughout 
the development period, was introduced in a compact manner in the publication 
"Typologický systém ÚHÚL" (Czech forest site classification system) [2], where the 
fundamental properties of the system and the units thereof were described on a more 
or less general level. The system units were defined based on the author's empirical 
experience with the application of the then-known scientific knowledge. 
Subsequently, the CFSCS underwent minor adjustment in 1973. Since then, no major 
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changes have been made to this system. Even though the Czech Forest Site 
Classification System was published several times as part of expert papers [3][4][5], it 
has not been assessed, modified or changed on a comprehensive basis since its 
establishment. 

Insufficient or general definitions in the publication of K. Plíva lead to an 
inconsistent understanding of the system by its users. The result is inaccurate or 
varying application of these units in practice, mostly in the preparation of the Forest 
Site Type Map. This gives rise to the issue of inconsistent contents and formal aspects 
in the characteristics of CFSCS units. If we realize that CFSCS is the main instrument 
in the differentiation of our forests for the needs of forest management, funding 
policies, forest valuation, decision-making of environmental protection authorities 
and state forest management bodies, then this condition of the typological system is 
alarming. The extensive Database of Czech Forest Site Classification System of the 
Forest Management Institute (FMI) is hence an instrument to improve this condition, 
as the data it contains (almost 50,000 samples from terrain research plots) can be 
subjected to a comprehensive assessment of the CFSCS and precise definitions of the 
units can be made. Also, the methods of a practical Forest Site Typology application 
can be developed for the user.  

The objective of this study was to assess the importance of the vegetation structure 
for the individual levels of the Czech forest site classification system: vegetation tiers 
(=altitudinal vegetation zones) (VT), edaphic series (ES), edaphic categories (EC) and 
forest site type complexes (FSTC)) and classify samples from the database of these 
units. This is therefore the first independent assessment of an expert system based on 
terrain data. By using taxons, a classification analysis was carried out by applying the 
Random Forests method on all CFSCS levels. From the analysis results, it can be 
determined which CFSCS units are well defined in terms of vegetation and which 
overlap. 

1.1   Data Sources 

The data set for CFSCS level classification includes 48,439 typological samples in 
39,157 Forest site research plot. The Czech forest site classification system consists of 
hierarchical levels of forest site typological units. Forest site type complexes (178) are 
given by the combination of nine vegetation tires (1-9) and natural pine forest habitats 
and 25 edaphic categories. Edaphic categories are defined by soil properties important 
for management. Vegetation tiers characteristic with their woody structure are the 
foundation units for indirect representation of altitudinal climate (Fig.1). 
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Fig. 1. Czech forest site classification system (CFSCS). 
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Most forest site typological samples come from 1950 to 1980. The sampling covers 

forest areas of the Czech Republic in a rather representative way, with the exception 
of certain areas (e.g. Ore Mountains) (Fig.2). The average distance of the closest plots 
was 350m. Almost 90% of samples have the size of 400-500sqm and 20% of plots 
were sampled more than once. 

 

 
Fig. 2. Distribution of forest site research plot used for the analyses based on species structure.  

2   Methodology 

2.1   Random Forests Method for Classification  

Random Forests are the extension to decision trees. They may be applied for 
classification and regression, and remove certain difficulties stemming from the use 
of trees, mostly their instability [6]. Forests are mostly used for classification and the 
determination of predictors' significance. For classification forests, each observation 
is classified into one of the dependent variable categories based on predictors. The 
classification result is achieved by a majority vote. The most well-known forests 
include Bagging, Boosting and Random Forests.  

Random Forests [7] are one of the most recent techniques applied for classification 
issues. This technique was developed for sets containing a large amount of variables 
and samples. A big advantage is that the variables may be continuous or categorical 
and may correlate. Since this is a non-parametric technique, no specific distribution of 
variables is required. The only disadvantage is the testing of the settings of the 
individual parameters of this method. 
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A Random Forest consists of a varying number of trees. For the Random Forests 
method, binary trees of the CART [8] type are used. Training sets for the individual 
trees T are bootstrapped selections from the data set L. Bootstrapped selections are 
created by a random selection with replacement of size n and each of them is used for 
building one tree (in our case the "classification" tree). Observations not contained in 
the i-th bootstrapped selection Li for growing a Ti tree, are used for estimating the 
generalization (overall) error of this tree. These estimations are called OOB (out-of-
bag) estimations. In Random Forests the objective is not to grow an optimum tree, 
but, on the contrary, large trees are grown which are no longer pruned. When 
selecting the branching for the respective node, then certain m of input variables 
(predictors) X1,..,XM are selected from M and the best branching of the respective tree 
is searched only among the branching based on selected m variables. See more in [7]. 
Random Forests therefore uses both bagging and a random variable selection [9] for 
building a tree. 

The model created this way allocates importance to each predictor (species) in a 0-
100 range which determines how suitable this variable is for the classification of a 
dependent variable (e.g. forest-type group). 

Random Forests produces several importance measurements of variables. One of 
the most precise determinations of this quantity is a measurement of misclassification 
rate, where the variable values in the tree node are randomly permutated. 

For the forest algorithm, the right number of variables (m) and the number of trees 
(ntree) in the forest must be selected. The determination of these parameters is 
experimental to a certain degree and requires experience. The conventional method is 
to carry out experiments with different settings of these parameters, so that a forest 
can be obtained which shows the lowest possible error rate. Since testing is very time-
consuming (especially in the case of sets containing thousands of samples), it makes 
sense to select as many trees as is sufficient for optimum classification. Therefore, a 
larger number of trees are tested first. After a certain period of time, the trees start to 
converge into a correct value for the OOB estimate.  

With the help of forests, we are able to find out not only the classification 
percentage for the respective category and the values of variable importance, but we 
can also determine the suitable species combination for the prediction into categories 
of typological levels and prototype categories.  

We know the percentage of correct classification for each sample. The prototype is 
the "core" in the category, containing samples which are classified by trees with an 
accuracy of over 50%. By using these samples, we can calculate e.g. the median and 
quartile (for species coverage) and/or percentage representation (for presence-absence 
taxons) for each dependent variable category. The prototype hence provides an 
overall idea of the relationship between variables and classification. 

For each typological level, the setting combinations ntree = {100, 300, 
500,1000,2000} a m = {1,2,3,4,5,6,7,8,9,10} were tested. The overall forest error rate 
for biotic classification was stable for 600 trees and did not change any further. The 
minimum setting of the ntree value is therefore 600 trees in our case. The m 
parameter was different for different typological levels. 

Since trees are left to grow big (the usual number of samples in the terminal node 
is 5) and are not pruned retrospectively, it is obvious that samples within the same 
terminal node will be very similar. For each sample pair it can be calculated how 
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many times the samples occurred within the same terminal node. This rate is called 
"proximity" or "closeness" and ranges from 0 to 1 where 1 indicates maximum 
proximity (e.g. when the samples occurred together in the terminal node of 800 out of 
1000 trees, the proximity equals 0.8). If proximity is counted mutually from all 
samples, we obtain the association matrix. The similarity association matrix 
("proximity") may be used further for multi-dimensional analyses, because it meets all 
the conditions. Also outlier samples may be defined by means of proximity. As outlier 
samples are considered those that show the smallest proximity to samples within its 
classification category. Besides proximity measurement, also a probability 
measurement may be applied. 

2.2   Analysis of Forest Site Type Complexes Overlapping 

This classification was calculated for edaphic categories and forest tiers, the 
combination of which forms Forest site type complexes (FSTC), the most important 
unit in the classification system. 

After making all the taxonomic adjustments a total of 791 species were available. 
Different taxonomic levels were used for the classification. By doing so, it can be 
determined what taxonomic level better defines the CFSCS units.  

Typological records, samples in the same site (n = 3410) or within a distance of 
less than 500m (n = 2317), were used as testing records in the classification, so that 
autocorrelation influence and duplication of the information in classification analysis 
could be avoided. 

Data on species in two variants were used for the classification analysis. In the first 
instance, only the presence/absence within a site is recorded for plant species. In the 
second instance, their actual coverage is identified. With standard settings of the 
analyses where the same weight is allocated to all classification units, groups with a 
smaller amount of records were underestimated. This was caused mostly by the 
distribution of these categories in the environment (e.g. edaphic category "R") and 
partly also by data collection. Therefore, further classification variants were 
calculated, with weighting of the categories. When creating the model, records for the 
testing and training set were selected more times for less represented categories than 
better represented ones. This may however also result in a certain distortion of results 
if the irregularity of categories is caused by data collection and not the representation 
in an environment. Also, there is bigger loss of variability in these groups and a slight 
overestimation of classification results. Still, despite these uncertainties, the results 
obtained by category weighting are more precise and reflect more suitable 
environment conditions than the results obtained by non-weighted classification. 

For all CFSCS levels, the percentage of correct classification was determined for 
all of the above mentioned settings (a total of 8 variants of classification analyses for 
each level). 
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3   Results

3.1   Classification of Edaphic Categories 

Edaphic categories contain a total of 25 categories. The data set for edaphic category 
analysis contained 17,979 plots and 791 species. The number of species required for 
the best possible classification into edaphic categories by the Random Forest method 
was 86. Figure 3 shows the 50 most significant species.  
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Fig. 3. Significance of species for classification into edaphic categories (based on coverage). 

The results of classification into edaphic categories for coverage and presence-
absence are very similar. For edaphic categories R, Z, S, Q, C and Y the percentage of 
classification by using coverage was approximately about 10% higher than with 
presence-absence (Fig. 4). 

The best classified Edaphic categories by the Random Forests method were X, W, 
L, U and J (for abundance also F and I) where the correct classification percentage 
(hereafter only CP) was over 70%.  

Other, relatively well-classified categories were Y, R, T, C (CP > 60%), but only 
for the classification with species coverage – for the presence-absence Edaphic 
categories with percentage classification between 60% and 70% were not represented 
at all. 

The least well-defined edaphic category was K. Categories with low classification 
were D, B, N, S and A. 

In the classification there was an overlap in EC from the G series - wet , 
specifically between T, G and R edaphic category. Category K overlaps in its species 
structure mostly with EC within the K series - acidic and with Y. In another, less 
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well-defined S category, there is an overlap with F, Y and N. Category A is most 
often classified as J, F and W, and category Q as M and T. Even though the M and W 
categories showed a high percentage of classified samples, we cannot say that these 
are well defined categories, because also other EC are classified into them. A 
relatively well-defined EC based on species structure appears to be X into which 
however also C is classified with 13%, L with a slight overlap with U, and I (as for 
coverage it overlaps only with K and as for presence-absence also with C). 

The results of the edaphic categories show clearly that the overlap between Forest 
site type complexes will exist not only within a single edaphic category, but also 
among FSTC from other edaphic categories. 
 

 
Fig. 4. Classification of edaphic categories and their overlap due to vegetation. Numbers are 
percentage of classification, empty cells are zeros. 
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Based on samples (with the probability of classification into the edaphic category 
over 0.5 – (see fig 15 and 16) the percentage representation (in the case of presence-
absence) and median (in the case of coverage) in edaphic categories were calculated 
for all species used for the classification. This is called edaphic category prototype. It 
can also be determined this way for which EC the respective taxon was important. 

3.2   Classification of Vegetation Tiers 

For vegetation tier (VT) and natural pine forest habitats classification, it was 
sufficient to reach a combination of 27 species to achieve the best classification. Very 
similar results can be achieved by combining different species with similar 
environmental conditions. Figure 5 shows the 30 most important species for 
classification. 
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Fig. 5. Importance of species for vegetation tiers (coverage). 

The results for presence-absence and coverage were again very similar. The 
difference in classification results for these variants is < 10% for all vegetation tiers. 
Vegetation tiers and natural pine forests habitats were very well classified thanks to 
their species structure. Most often there is an overlap with the neighboring vegetation 
tier. The best classified edaphic categories are natural pine forests habitats (91%) and 
vegetation tiers 1 and 9. Vegetation tier 9, however, contains very few samples (n = 
53). Pine forests are also the best defined edaphic categories, since no other 
vegetation tiers overlap with them to a major extent. The least well-classified stage is 
vegetation tier 3, followed by (in classification through species presence) VT 7 and 4. 
The biggest overlap persists in VT 7 � 8 (31% for presence, 26% for coverage), as 
shown in Fig. 6. 
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Fig. 6. Classification of vegetation tiers and their overlap due to vegetation. Numbers are 
percentage of classification, empty cells are zeros. 

3.3   Forest site type complexes Classification 

The set for the analysis of Forest site type complexes (FSTC) contained 29,854 
typological plots, divided into 178 FSTC. The most significant variables for the 
determination of FSTC were the combinations of important variables from edaphic 
categories and vegetation tiers (+ natural pine forests), through which Forest site type 
complexes are clearly defined (Fig. 7). These were the following climate variables: 
altitude, annual precipitation, average annual temperature and vegetation period 
duration (amount of days with temperature over 8OC) as well as these soil-related 
variables: soil type (80), geomorphological unit, humus form of soil and soil texture, 
the most significant variable of which is the soil type.  
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Fig. 7. Classification of Forest site type complexes based on vegetation (presence-absence). 
Numbers are percentage of correct classification. 

From the total of 178 FSTC, the biotic classification discovered 20 FSTC containing 
� 10 samples for analysis. In another 12 FSTC, the number of samples for analysis 
was � 20. The classification percentage for FSTC with this low number of samples 
cannot be considered significant; this data is informative only. Similarly, for an FSTC 
between 10 and 20 records, any interpretation must be approached carefully. The 
comparison of FSTC classification is shown only for an FSTC where the number of 
records is > 20. FSTC with low classification percentages overlap with very similar 
FSTC (in terms of vegetation or soil characteristics). 

4   Conclusions 

The preparation and assessment of the Database of Czech Forest Site Classification 
System demonstrated the strengths and weaknesses of the characteristics of the 
classification system of forest site typology. Following data evaluation, system 
modifications can be designed and implemented, and thus improved. An important 
aspect of possible adjustments is the preservation of basic characteristics of the 
CFSCS, which is a practical utility for forest management needs. The monitoring of 
forest site research plot is an important and integral part of forest site typology. 
Without an extensive database featuring the state of forest ecosystems, the Czech 
forest site classification system cannot be administered in an objective manner and no 
models of implications of the climate change on forests in the Czech Republic can be 
prepared. The analyses imply that there are insufficient samples for certain Forest site 
type complexes, which reduces the utility of the database for analyses. In order to 
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improve the utility of the database and make future analyses more accurate, data must 
be collected on monitoring areas, so that all units (Forest site type complexes) are 
described with min. 20 records. FSTC with a low percentage of correctly classified 
samples (this applies to almost one half of all assessable FSTC) are mostly similar 
FSTC (e.g. FSTC with neighboring forest vegetation zone and/or in same EC). The 
results can be therefore used as a proposal to merge certain FSTC. Another important 
result was the identification of FSTC that were defined only with difficulties. Also, 
the question is whether criteria other than those in the database shall be involved for 
decision-making for FSTC classification in the field. The application of the Random 
Forests method therefore proved to be very efficient when used for large data sets. 
This was not only because of the accuracy of classification into units, but also thanks 
to additional informations for the categories, such as outlier samples, determination of 
a set of parameters suitable for sampling in the field and also rules for clear sample 
categorization.  
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Metaheuristic Optimization Methods for Magnetic 
Resonance Image Registration 

Petr Dluhoš 

Faculty of Science, Masaryk University, Brno 

Abstract. The aim of this paper is to present the common global optimization 
methods used in medical image registration and to propose an implementation 
of one of them – the genetic algorithm. The genetic algorithm for 3-D affine 
registration is implemented in MATLAB in package Statistical Parametric 
Mapping version 8 (SPM8). The efficiency of this algorithm is tested on 
magnetic resonance images of human brain and compared with the 
conventional algorithm for affine registration used in SPM8.  Experimental 
results show that the genetic algorithm gets better performance for highly 
misregistred images where the initial solution is far from the optimal one and 
gets comparably good results as the conventional algorithm in the case of 
slightly misregistred images. 

Keywords: MRI, linear registration, affine registration, optimization, 
metaheuristic methods, genetic algorithm 

1   Introduction 

Registration is one of the basic methods for integration of image data. It is used as a 
crucial step in many tasks resulting in image comparison, finding specific structures 
or gathering new information about displayed object. The quality of results of tasks 
using medical image analysis, such as image segmentation, construction of 
anatomical or functional atlases, localization of pathologic tissues or designing of 
surgeries and evaluating their impact highly depend on quality of prior image 
registration. This is the reason for a big effort to enhance the quality of automatic 
image registration methods. 

There exist reliable methods for finding parameters of linear image registration 
when a sufficiently good solution is known which can serve as a starting point for the 
registration. This coarse solution can be provided by an expert in relevant area. 
However, with increasing tendency of automatization of image processing methods 
arises also the demand for automatic run of registration algorithm without the need for 
human intervention. In some cases, such as real-time registration during an operation, 
it is the only possible solution. These are the situations suitable for using global 
registration methods which can avoid suboptimal solutions and find the desirable 
solution without any initial knowledge. 
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1.1   Metaheuristic optimization methods 

Metaheuristic optimization methods are global non-gradient methods. Optimal 
solution is searched by an iterative process and it is usually worked with whole 
population of solutions instead of only one. Many of these methods use random 
variables in the process which leads to a non-deterministic behavior. However, 
practical results indicate that metaheuristic methods can be very efficient for solving 
some classes of problems. 

There are four main metaheuristic optimization methods which are used for 
magnetic resonance (MR) image registration: Tabu search which uses memory for 
storing recently visited states to avoid local optima (this states are called tabu) [1][2], 
simulated annealing which was inspired by annealing in metallurgy, a technique for 
creating crystals. It is based on gradual cooling of the material to give it an 
opportunity to stabilize in the state with the lowest energy. This corresponds to a 
decreasing chance for the algorithm to accept a state with better functional values 
[3][4]. Third method used for optimization in medical image registration is particle 
swarm method [5]. In this method, a population of particles moves in the search space 
of the optimization problem, each particle representing one solution. Particles change 
their velocities according to the quality of the represented solution and the solutions 
of the neighbors. Last group of metaheuristic algorithms are the generic or 
evolutionary algorithms [6]. These methods are inspired by the evolutionary processes 
in nature where the pressure of the environment and competition leads to adaptation 
of the population and general improvement of the average fitness of its individuals. In 
the algorithm solutions represent the individuals whose fitness is derived from the 
functional values of the optimized function. New solutions are made from the old 
ones by using three basic operations – mutation, crossover and selection.  

2   Methods 

It was chosen an algorithm for 12-parametic affine registration of MR brain images 
from the MATLAB package SPM8 and the optimization procedure of this algorithm 
was replaced by an implementation of a genetic algorithm. This new algorithm works 
with a population of 500 individuals, each of them representing one solution (coded 
as twelve real numbers – triplets of parameters for translation, rotation, shear and 
scale). Selection was done by roulette wheel selection algorithm – probability of 
being selected to the next generation is proportional to the order of the individual 
among the others according to their fitness. Mutation was implemented as a small 
chance that each parameter would be randomly changed with respect to specific 
boundaries. Crossover was realized by exchanging some subintervals of two 12-tuples 
representing two individuals.  

2.1   Experiments 

Performance of the newly implemented genetic algorithm was tested on a set of 
manually misregistred MR images (T1-weighted, 512x512x160 voxels) and the 
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results of the rigid registration were compared to the original algorithm from SPM8.  
Less exhaustive experiments were done for more general affine registration and 
intersubject registration. Detailed results of the experiments can be found in the 
section Results. 

3   Results 

The testing images were divided into several groups – three groups for the 
intrasubject rigid registration according to the number of nonzero parameters in 
searched transformation (out of six parameters of rigid transformation): one 
parameter, two parameters, complex rigid registration (six parameters), and two 
groups for nonrigid registration: one group for general intrasubject affine registration 
and one for intersubject affine registration. So for the first three groups, only 
translation and rotation parameters were used, more parameters were included for the 
last two groups. Results of the first three groups (with known optimal solution) were 
classified as success or failure according to the absolute difference between found and 
best values of affine parameters (success means less then 1.5 mm or less then 
0.05 rad) and can be seen in Table 1. Results of the nonrigid registration and 
intersubject registration were evaluated by mean squared error of differences of 
intensities of corresponding voxels in both images (Table 2).  

Table 1. Results of the rigid registration performed by genetic algorithm (GA) and original 
algorithm. Testing group = number of nonzero parameters in searched transformation, Number 
of cases = number of performed experiments, Percent of cases classified as success = percent of 
successful registrations. 

Testing group Number of cases Percent of cases classified as 
success for GA / original algorithm 

one parameter 18 100%    /    67% 
two parameters 9 89%      /    67% 
six parameters 3 100%    /    33% 

Table 2. Results of the intrasubject and intersubject affine registration performed by genetic 
algorithm. Testing group = dividing of experiments to inter- and intra-subject registration, 
Average MSE = average achieved mean squared error of differences of intensities of 
corresponding voxels in both images. 

Testing group Average MSE 
intrasubject affine registration  0.235
intersubject affine registration 0.586
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4   Conclusion 

The presented genetic algorithm performed significantly better than the original 
algorithm in the task of rigid registration while the computation time was slightly 
longer (minutes). It was able to find the optimal transformation even for highly 
misregistred images which the original algorithm cannot handle.  With the increasing 
number of parameters of the affine transformation, the time demands increased and 
the precision got worse. So the ideal usage of the algorithm would be to find a coarse 
transformation in the case we do not have any good initial solution. This coarse 
solution could then serve as an initial transformation for some good local algorithm. 

The implemented genetic algorithm appeared to be not as good for the general 
affine transformation probably due to the high dimension of search space. Possible 
solution and a way for further improvement of the algorithm could be finding a better 
settings of parameters (population size, mutation and crossover rates, selection rule) 
or  implementing registration in more steps (multiresolution approach). 
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Abstract. Acute heart failure (AHF) is a disease with complicated etiology, 
difficult diagnosis and high mortality. The treatment is demanding and 
economically very costly. AHF together with chronic heart failure is disease 
that we consider to be the epidemic of 21st century. Due to these facts case 
studies of acute heart failure are often being gathered in registries throughout 
the world. The aim of this study was to analyze hospital mortality and long-
term survival on real data from the Czech registry AHEAD (Acute HEArt 
failure Database) and to create a review of AHF registries in the literature and 
compare their results with the AHEAD. 

Keywords: Acute heart failure, logistic regression, mortality, odds ratio, 
AHEAD, survival analysis.  

1   Introduction 

Acute heart failure is a sudden incurred disorder of cardiac function (or its sudden 
setback) when the heart is unable to pump enough blood. The consequence of this 
disorder is congestion of blood in the lungs and others organs and a lack of 
oxygenated blood supply to organs. 

According to the severity of symptoms, AHF is divided into 6 types: right HF, 
heart failure with a high output, mild HF, pulmonary edema, hypertensive HF, and 
cardiogenic shock. 

AHF has a high mortality and affects increased amount of people in consequence 
of aging population and successful treatment of others diseases. It is the worldwide 
problem and in Czech Republic it is the registry AHEAD, which collects data about 
patients with AHF and also served as a data source for this study. Data of 
primohospitalizations from the 4153 patients from eight cardiocenters with Cath Lab 
facilities and information about long-term survival was used. 

2   Methods 

Basic patient characteristics, risk factors of in-hospital mortality and long-term 
survival were evaluated. Review of AHF registries was created for the purpose of 
comparison with registry AHEAD. 
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2.1   In-hospital mortality 

In-hospital mortality was assessed using logistic regression whose coefficients are 
estimated by method of maximum likelihood and odds ratio was used to 
interpretation. At first individual variables were evaluated by univariate analysis, 
missing values were eliminated from the analysis. Statistically significant variables 
were used as a basis for multivariate analysis. Prior to multivariate analysis variables 
with many missing values and redundant variables were excluded. The remaining 
variables were evaluated by backward stepwise elimination method of logistic 
regression - separately for patients with cardiogenic shock and for patients without 
this syndrome.  

2.2   Survival analysis 

Survival analysis was computed by method of Kaplan-Meier and was stratified 
according to etiologies and syndromes. For comparison among individual subgroups 
log rank test was used. Landmark survival analysis from admission, and 30 day after 
admission was computed.  

3   Results 

3.1   Risk factors of in-hospital mortality 

The greatest risk for patients with cardiogenic shock are aortic stenosis with odds 
ratios 3.8 (1.466, 9.692) and acute renal failure where the chances of death is nearly 
three times higher than in patients without this comorbidity. 

In patients without cardiogenic shock acute renal failure belongs to the most risk 
factor again with odds ratios 7.5 (4.057, 13.715), increased levels of C-reactive 
protein in the blood above 10 mg/L - these patients have up to 5 times higher chance 
of death in comparison with patients with lower levels of this protein in the blood, 
low systolic blood pressure is also risk factor. 

3.2   Long-term survival 

From the difference of the survival curves stratified according to basic syndromes and 
evaluated from the first admission and after 30 days of admission we could conclude 
that the most patients dying during hospitalization is due to cardiogenic shock. If they 
survive the first 30 days, significant relationship to the syndromes cannot be seen 
anymore. 
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3.3   Review of registries 

Registries collect data on the demographics of patients, the diagnosis and treatment 
and follow-up, then the data are evaluated statistically and can provide valuable 
information. 
Following studies were compared with the AHEAD registry: 
American Studies: ADHERE [1], OPTIMIZE-HF [2] 
European studies: EHFS II [3], EFICA [4], FINN-AKVA [5], studies in Zurich and 
Helsinki [6] 
Asian Studies: ATTEND [7], Thai ADHERE [8] 

3.4   Comparison of registries with database AHEAD 

AHEAD registry is not significantly different from others in terms of the basic 
description of the patients. But of all the registries that show the value of in-hospital 
mortality the AHEAD has the highest value (12.7%) while others reached a maximum 
of 8%. Probably this value is very influenced by varying structure of syndromes in 
patients of individual registers, especially the ratio of patients with cardiogenic shock 
which is the main cause of in-hospital mortality. 

High age, low systolic blood pressure and increased levels of creatinine in blood 
were the most often mentioned in the registries from the risk factors of mortality. All 
these factors also have been identified as the risk factors in the registry AHEAD. 

Some results may be influenced by the ethnicity of the population. In the 
OPTIMIZE-HF study was found that black patients have on average higher blood 
pressure and the occurrence of AHF predominate in them in women. 

4   Conclusions 

Logistic regression and survival analysis methods are important procedure in the 
statistical evaluation of mortality and survival not only in patients with the acute heart 
failure. During the study register AHEAD was analyzed (descriptive analysis and 
analysis of mortality factors) and the review of registers AHF was created. 

In-hospital mortality (12.7%) is higher than in others registries. This value is 
probably affected by the proportion of patients with cardiogenic shock. 

Among the most risk factors of patients with cardiogenic shock belong aortic 
stenosis and acute renal failure, in patients without this syndrome it is especially acute 
renal failure, increased level of C-reactive protein in blood and low systolic blood 
pressure. These factors, except for aortic stenosis occur in others registries. 

The results of short-term and long-term survival were different, especially in AHF 
syndromes (cardiogenic shock) which have an impact mainly on in-hospital mortality. 

Register AHEAD is an important AHF registry, in terms of number of patients it is 
the 3rd largest registry within others, but it is necessary to be careful during 
interpretation by reason that it may not be fully representative for Czech Republic 
because the analysis is limited to data from large centers. 
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Abstract: This study describes methods of T-wave end detection 
in electrocardiogram (ECG) signals. The most widely used method of T-wave 
end detection is compared with three other methods of T-wave end detection 
and one method of T-wave maximum detection. Differences between these four 
methods of T-wave end detection were statistical tested. The method of T-wave 
maximum detection was tested and verified on real data sets. 

Keywords: T-wave, electrical activity of the heart, electrocardiography, 
electrocardiogram (ECG), RR interval, QT interval, T-wave detection, ECG 
filtration.  

1   Introduction 

This study considers methods of T-wave end detection in electrocardiogram (ECG) 
signals. There is a detailed description of a procedure of QT interval measurement. 
The most widely used method of T-wave end detection uses the interleaving of a 
straight line along the descending part of the T-wave and its intersection with the 
isoelectric line (standard method). The QT interval is the phase of depolarization and 
repolarization of ventricles. Automatic measurement of QT intervals can uncover 
serious life-threatening genetic diseases or poor physiological conditions resulting 
from certain drugs. 

The differences between the four methods of T-wave end detection were tested and 
discussed. The final part of this study concerns a method of T-wave maximum 
detection. This was tested and compared with the standard method. 

2   Methods 

Data for testing the four methods was taken from 12 healthy volunteers. This data was 
measured at St. Anne’s University Hospital in Brno. Lead II of a 12-lead of stress 
measurement of ECG was used. Stress is specific cycling in this situation. The four 
methods compared were the method of the first minimum, the local minimum 
method, the method of derivation and the standard method mentioned previously. 
The special program ScopeWin QT from the Institute of Scientific Instruments of 
the Academy of Sciences of the Czech Republic was used for the purposes 
of detection. The MATLAB system was used for statistical testing. The ECG signal 
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was pre-processed by a low-pass filter of 0.8 Hz, a high-pass filter of 48 Hz and 
a floating window (20 points width) and was subsequently segmented. 
The First Minimum Method. This method identifies the T-wave end as the point 
of the first minimum from the left limit in the detection area.  
The Local Minimum Method. This method works by analogy. It identifies 
the T-wave end as the point of the global minimum inside the detection area. 
 

 

Fig. 1. Methods of T-wave end detection – the First Minimum (2:) and the Local Minimum (1:) 

The Standard Method. This uses the interleaving of a straight line along 
the descending part of the T-wave and its intersection with the isoelectric line 
for marking the T-wave end.  
The Method of Derivation. This method tells us that the T-wave end is the point of, 
for example, a 20 % fall of the descending part of the T-wave. The derivative signal is 
used for detection. 
 

  

Fig. 2. An algorithm of the Standard Method (left) and the Method of Derivation (right) 

All these methods require the presence of a detectable minimum in the T-wave 
end area for their algorithm. These methods provide incorrect results if this condition 
is not met. This is the reason for developing a new method that detects the T-wave 
maximum.  
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T-wave maximum detection was performed using the MATLAB system. Data 
from ECG measurements of mental stress (counting) in lead V3 and data from 
measurement of physical stress (cycling) in lead V4 was used for testing this method. 
Data was taken from one chosen volunteer. In the first case there is a T-wave end 
without a good minimum, while in the second case there is a good profile but also 
a lot of noise and heart-rate variability. Good results using the standard method were 
expected in the second case. 

 

 

Fig. 3. Construction of QT interval for T-wave maximum detection (left); T-wave end 
without minimum in mental stress measurement (right) 

3   Results 

3.1   A comparison of the methods 

The graph below shows the average length of QT intervals. This was detected by four 
different methods from data from 12 healthy volunteers. We can see that the standard 
method measures shorter QT intervals than the other methods. 

 

 
Fig. 4. The average values of QT intervals from 12 people using 4 methods 
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The statistical significance of the differences in QT intervals was tested 
by MATLAB. A non-parametric sign test with Bonferroni’s correction was used 
because of violation of expectations (Gaussian distribution and data independence). 
We proved a significant difference between the derivative method and the method 
of local minimum and a difference between the standard method and all other 
methods at a significance level of 0.05/ 6 = 0.0083. 

3.2   T-wave maximum detection 

T-wave maximum detection was performed on data from mental stress and physical 
stress, both from one chosen subject. In the first case there is a T-wave end without a 
good minimum, and in the second case there is a good profile but also a lot of noise 
and heart-rate variability. Good results were expected of the standard method in the 
second case.  

If heart rate increases (RR interval is shorter), the QT interval must also be 
shorter. Prolongation of the QT interval is not expected at this time. This is evidence 
of the failure of the standard method. We can see this in Figure 5, left panel. The right 
panel shows the second situation – physical stress. There is correct behaviour of both 
curves. 

 

 
Fig. 5. Length of QT intervals measured by the standard method in ScopeWin QT (black) and 
by the method of T-wave maximum detection in MATLAB (grey). The left panel is taken from 
mental stress measurement and the right panel from physical stress measurement.  

The different detection at the time of the rapid onset of stress in the second 
measurement was surprising to us. This area was studied, and we find a changing 
length of the Tmax-Tend interval during the signal. This finding is good material 
for further study. 

4   Conclusion 

We do not know which method detects the correct length of the QT interval. 
The practical significance of this must be consulted with doctors. If we compare 
methods of QT interval detection (method of the first minimum, method of the local 
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minimum, method of derivation, and method using interleaving of a straight line 
along the descending part of the T-wave and its intersection with the isoelectric line – 
standard method), we verify the expectation that the standard method detects a shorter 
QT interval. At a significance level of 0.05 we also proved a significant difference 
between the derivative method and the method of local minimum.  

The right trend in QT interval detection was confirmed in the last part of this study 
for a new method of T-wave maximum detection. This method was very good 
for detection in a signal without a minimum, and was also comparable in quality with 
the standard method (in ScopeWin QT) in an ordinary signal. 
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Abstract. Rabies virus causes approximately 55 000 deaths, mainly in Africa 
and Asia. Reconstruction of population history would expose spreading of 
Rabies and its response on vaccination programs and other means of animal 
control. We have reconstructed population history of 453 RABV sequences 
coding N-protein from China, USA and Europe using BEAST program for 
Bayesian coalescence analysis. Furthermore, bayesian skyline plot was 
constructed using Tracer. Bayesian coalescence analysis suggest introduction of 
RABV into USA at the very beginning of European colonization.  Results have 
also shown increase of European RABV population in 1920s with increased 
trend in 1960s, probably due to adaptation and introduction of new hosts. 
Increase of dynamics in China and USA is probably caused by intensive 
sequencing, rather than real changes in population structure, although 
vaccination-caused peaks are presented.  

Keywords: rabies, RABV, Bayesian coalescence analysis, population history, 
bayesian skyline plot 

1   Introduction 

Rabies virus causes approximately 55 000 deaths, mainly in Africa and Asia. 
Although some developed countries have been proclaimed rabies-free due to intensive 
vaccination and animal control programs, risk of rabies has not been completely 
eliminated and due to animal trade and natural human and animal migration, rabies 
has managed to return and spread. 

Coalescence method is another way, beside incidence, to gain information of 
population dynamic of rabies. Bayesian coalescence method [1] was successfully used 
in this area, from analyzing of local populations of dog RABV in Middle and West 
Africa [2] or population of RABV in China [3]. 

Aim of this work is to reconstruct population history of three distinctive 
populations with different historic development, populations of China, Europe and 
USA, visualize them by Bayesian skyline plot [4] and evaluate their development 
with connection to rabies-related events (such as vaccination, animal control program 
or introduction of new hosts). 
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2   Materials and Methods 

Complete sequences coding N-protein were acquired from GenBank database. Only 
non-vaccine strains with acquirable date and place of isolation were used, resulting in 
total 453 sequences, 17 from Europe, 178 from China and 258 from USA. Sequences 
were aligned using ClustalW [5] version 1.82 through ClustalW-XXL1 web service. 

Bayesian coalescence analysis was handled by BEAST2 [6] version 1.6.1. Three 
demographic models (constant population size, exponential grow and Bayesian 
skyline) and three molecular clock models (strict molecular clock, relaxed log-normal 
and relaxed exponential molecular clock) were used along with GTR+� substitution 
model. Number of generations in the MCMC run was set to 108, recording every 104 
sample. One run for combination of each dataset, demographic model and molecular 
clock model, 27 runs in total were executed on MetaCentrum3 computational 
network. 

Corresponding bayes factors of each model were then compared using Tracer4 to 
find best model for every dataset and Bayesian skyline plot was constructed for each 
dataset and model of molecular clock to reveal demographic changes.  

3   Results and Discussion 

Bayes factors have shown that no demographic model was better than others. 
Constant molecular clock for Chinese and American dataset were slightly better than 
either relaxed molecular clocks. For European dataset, strict molecular clock model 
for constructing Bayesian skyline plot was selected as the most simple hypothesis. 

Bayesian skyline plot has revealed possible introduction of European RABV into 
the USA in the very beginning of its colonization. Additionally to that, rapid decrease 
of population size in the 1940s correlate with start of national vaccination programs 
[7], accompanied by a number of similar rapid decreases and increases. This could be 
artifact caused by intensive sequencing and obtaining of new strains. 

                                                           
1 http://www.ch.embnet.org/software/ClustalW-XXL.html 
2 http://beast.bio.ed.ac.uk/Main_Page 
3 http://metavo.metacentrum.cz/ 
4 http://beast.bio.ed.ac.uk/Tracer 
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Fig. 1. Bayesian skyline plot for dataset from USA. The x axis is in calendar years and the y 
axis show effective population. The thick line show median of highest posterior density while 
the gray lines its 95% interval. 

 
Fig. 2. Bayesian skyline plot for dataset from Europe. The x axis is in calendar years 
and the y axis show effective population. The thick line show median of highest 
posterior density while the gray lines its 95% interval. 
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Fig. 3. Bayesian skyline plot for dataset from China. The x axis is in calendar years and the y 
axis show effective population. The thick line show median of highest posterior density while 
the gray lines its 95% interval. 

For European dataset, Bayesian skyline plot showed increase of RABV population 
from the 1920s with increasing trend in the 1960s with its peak around the 1970s. 
There is well-documented adaptation of RABV to foxes on Russian-Polish borders in 
1940s, that has spread through Europe, reaching France in 1968 and Northern Italy in 
early 1980s [7]. Furthermore, in the 1920s Raccoon dog (Nyctereutes procyonoides ) 
was  introducted in Russia. It has then spread into most of Northern Europe [7]. No 
sudden change due to vaccination is probably caused by high level of environment 
cultivation in Europe and low level of rabies there. 

Bayesian skyline plot for the Chinese dataset shows decrease of RABV population 
from the 1920s to the 1960s. We didn't find any rabies-related event, that would 
explain this decline. Furthermore, there is same situation as in USA, rapid increase 
and decrease of Chinese RABV population from 1980s. Although there is evidence of 
increased level of RABV in China, we don't find doubling of its population realistic 
and ascribe it to similar phenomenon we have encountered with USA dataset, 
intensive sequencing. In closer examination, we can identify particular waves of 
vaccination, notably in 2001, when new type of vaccine was introduced [8], although 
in that year, incidence of rabies have increased due to higher cost of new vaccine and 
its lower availability. Another way to explain the increase of RABV in China is its 
relation to turbulent economic changes, intensive animal market and town 
immigration.  
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4   Conclusion 

We have reconstructed population history of RABV in Europe, China and USA and  
connected most of changes in estimated population with historic rabies-related events. 
However, the problem of distortion caused by intensive sequencing persists. There is 
also area for future depth research of Chinese population, given the turbulent changes 
in recent past and large amount of data. 
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Parametric Survival Models 
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Abstract. In survival analysis, non-parametric methods are widely used and 
they have become very popular because of plainness of their application. 
However there may be settings in which non-parametric methods are not 
available and that is why a parametric approach is also very important. 
Parametric methods have some advantages over non-parametric ones but an 
important assumption has to be verified – the probability distribution of 
survival time has known parametric form. Aim of this contribution is to 
summarize issues of basic parametric regression models used in survival 
analysis (e.g. the most important distributions of survival time, AFT and 
proportional hazard form of model) and discuss an adequacy of used models 
within individual cancer diagnosis.  

Keywords: survival analysis, censoring, parametric regression model, 
accelerated failure model, proportional hazard model, Akaike information 
criterion 

1   Introduction 

Survival analysis includes important methods used in modern medicine and clinical 
research especially in oncology. These methods provide information about survival 
time of patients which is essential when assessing a quality of health care for cancer 
patients. This assessment is necessary because it is often a disease with high mortality 
and an expensive treatment. 

A characteristic of survival data is censoring [2] which occurs when the value of 
survival time is only partially known. 

2   Methods and materials 

In my work, methods of survival analysis are presented as non-parametric or fully 
parametric. Then the best known non-parametric estimators of survival function are 
mentioned: the Kaplan-Meier estimator [3] and life-tables based estimator [4]. The 
main part of my thesis deals with parametric regression models in survival analysis 
[2]. These models allow to quantify an effect of explanatory variables on survival of 
patients and can also be used to predict future values of survival. Regression models 
based on exponential, Weibull, log-normal and generalized gamma distribution are 
presented closely. Then two forms of models are mentioned: accelerated failure time 
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form (AFT) which assumes that the effect of covariate is to multiply survival time by 
constant; and proportional hazard form (PH) which assumes that the effect of 
covariate is to multiply hazard by constant. Comparison of Akaike information 
criterions [1] is presented as a way to judge which of used models fits the data best.  

3   Results 

Methods presented in previous section were applied to data from the Czech National 
Cancer Registry (CNCR) including cancer patients with diagnosis C18-C21, C25, 
C34, C50 and C61 diagnosed in 1989-2008. Individual parametric estimates of 
survival function were compared with Kaplan-Meier estimator. These comparisons 
show that data of patients with prostate cancer (C61) can be modeled with Weibull 
distribution. In other cases, occurrence of proportion of cured patients causes 
complication with fitting parametric model. Thus only data of patients with cancer 
diagnosed in fourth stage (where proportion of cured patients is assumed to be zero) 
can also be modeled with parametric models. All these applications were done by 
using software R and STATA.  

4   Conclusion 

In this work, I presented basic non-parametric and parametric methods used in 
survival analysis and applied them to the real data from CNCR. Besides C61 and 
cancer diagnosed in fourth stage, some problems with fitting parametric models have 
occurred. I assume this might be solved by using another advanced models. 
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