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Foreword 

Computational Biology is a modern field of study at the Faculty of Science of Masaryk 
University (MU). The study programme is guaranteed by the Institute of Biostatistics and 
Analyses (IBA), which provides computationally oriented courses within the educational 
concept of the Faculty of Medicine and the Faculty of Science. The educational concept of IBA 
MU covers applied data analysis and informatics, specialized for biological and biomedical 
sciences. Progress in such an interdisciplinary field would not be possible without international 
cooperation, and indeed, collaboration with experts from other countries improves the quality 
of education in Computational Biology remarkably and helps us to incorporate new ideas and 
trends. This concept also covers mathematical modelling, both in theoretical lectures and in 
practical training. 

IBA MU has initiated a yearly tradition of informal summer schools focused on various 
aspects of computational science in biology and biomedicine: 

2005 - Computational Biology 
2006 - Predictive Modelling and ICT in Environmental Epidemiology 
2007 - Processing and Analysis of Biodiversity Data: from Genomic Diversity to Ecosystem 

Structure 
2008 - Statistical Methods for Genetic and Molecular Data 
2009 - Analysis of Clinical and Biomedical Data in an Interdisciplinary Approach (in 

Czech), 
where the invited lecturers and other participants enhance the scope of the Computational 

Biology study programme. Modelling – both deterministic and stochastic – will be the main 
topic of the 6th Summer School on Computational Biology. These meetings were organized in 
close cooperation with the Research Centre for Toxic Compounds in the Environment 
(RECETOX) formerly the Research Centre for Environmental Chemistry and Ecotoxicology of 
Masaryk University and the Jaroslav Hájek Centre for Theoretical and Applied Statistics of 
Masaryk University.  

This foreword introduces the proceedings of the 6th Summer School on Computational 
Biology which will take place in Lednice, Czech Republic, from 23 to 25 September 2010. The 
topic of the summer school is “Deterministic and Stochastic Modelling in Biology and 
Medicine”. This topic was chosen as a very important phenomenon which has generated 
exciting modelling research topics for centuries. The investigation of modelling in biology and 
medicine, particularly deterministic and stochastic modelling has always been closely linked to 
mathematical and statistical theory and to computational skills.  

Even the simplest modelling of natural and human phenomena and visualization of 
monitored and processed data require a specific kind of frequency mathematical analyses and 
summary statistics. The deterministic and stochastic modelling and their reflection in 
contemporary computational techniques still present very progressive scientific goals, together 
with an ever-growing importance in this field in recent years. Our summer school has 
specifically addressed all fields that might be interesting for computational biology and 
medicine. 

The programme of the summer school will include, among others, lectures by the following 
experts from abroad and the Czech Republic: 

� Prof. Walter Gander, ETH Zurich, Switzerland: Solving least squares problems 
� Dr. Lud�k Berec, Institute of Mathematics and Biomathematics, Faculty of Science, 

South Bohemia University, Czech Republic: Modelling infectious diseases in humans 
and animals 

� Prof. Daniela Cocchi, Facoltà di Scienze Statistiche Università di Bologna, Italy: 
Spatio-temporal modelling of air pollution 
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� Assoc. Prof. Stanislav Barto�, Mendel University in Brno, Czech Republic: Exact 
vectorization of the bitmap in biological modelling 

� Dr. Ond�ej Pokora, Faculty of Science, Masaryk University, Czech Republic: 
Stochastic modelling of signal transduction in sensory neurons 

� Prof. Jana Zvárová, Prof. Karel Zvára, Centre of biomedicine informatics, Prague, 
Czech Republic: Stochastic modelling of biodiversity 

� Assoc. Prof. Zden�k Pospíšil, Faculty of Science, Masaryk University, Czech 
Republic: Deterministic models of natural selection and their relation to ecology 

Clearly there is a lot of work to do and matters to investigate within biology and medicine in 
relation with mathematical and statistical modelling and using information and communication 
technology. And what’s more, the world of biology and medicine science is opened to new 
ideas and methods developed by mathematical and computational scientists. The educational 
mission of the summer school will cover modelling, processing and visualization of all types of 
biology and medicine-related data, using accessible software packages. Practical training in 
tutorials will be based on modern numerical and statistical methods. Participants should gain a 
comprehensive overview of all key modelling, numerical and computational methods in 
biology and medicine, as well as a critical summary of their advantages and limitations. 

The summer schools on Computational Biology are expected to encourage collaboration 
among professors and junior scientists, as well as students of Computational Biology. Students 
can participate in informal discussions about novel methods in their field of study and can take 
advantage of this ideal opportunity to present their own results to the audience. An active 
contribution from advanced students forms a substantial part of the summer school’s 
programme.  

A student competition at the 6th Summer School of Computational Biology will be held 
under the auspices of assoc. prof. Ladislav Dušek, the IBA MU Director, who has announced a 
prize for the best contributions in two categories, students of bachelor programmes and students 
of master programmes. 

Here we would like to thank to all participants, namely actively contributing teachers and 
students. We also greatly appreciate all the foreign experts that have participated in the 
meeting, especially teachers that helped students with their results published here. 

We are also very grateful for the financial support of the Ministry of Education, Youth and 
Sports of the Czech Republic, project CZ.1.07/2.2.00/07.0318, Multidisciplinary Innovation of 
Study in Computational Biology, where this summer school is organized. 

On behalf of the programme and organizing committee, 
 
Brno, August 31, 2010 
 
 

Ji�í H�ebí�ek 
Ji�í Hol�ík 
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Solving Least Squares Problems

Walter Gander

ETH Zurich

gander@inf.ethz.ch

1 Least Squares Principle

In science and engineering we often need to estimate values of parameters of a mathe-

matical model from measured data.

Example 1. The amount f of a component in a chemical reaction decreases with time t
exponentially according to: f (t) = a0 +a1e−bt . If the material is weighed for different

times, we obtain a table of measured values:

t t1, · · · , tm
f f1, · · · , fm

The problem is now to estimate the model parameters a0, a1 and b from the measured

data. Each measurement point (ti, fi) yields an equation:

f (ti) = fi ≈ a0 +a1e−bti , i = 1, . . .m (1)

If there would be no measurement error then we could replace in Equations (1) the

approximate symbol by an equality and use three equations from the set to determine

the parameters. However, in practice, measurement errors are present and often also the

model equations approximate only the physical behavior. The equations will therefore

contradict each other and we need some mechanism to balance the measurement errors,

e.g. by requiring that Equations (1) are satisfied as well as possible.

To find a solution to such problems, C. F. Gauss invented 1795 the Least Squares
Method. Let us consider more generally some (non-linear) function f : R

n �→ R
m with

n ≤ m. We want to find a point x ∈ R
n such that

‖ f (x)‖2
2 =

m

∑
i=1

fi(x)2 = min . (2)

The principle of minimizing the sum of squares is abbreviated and known as Least
Squares. Methods for solving (2) are called Least Squares Methods. For a given vector

x we define r = f (x) to be the residual vector and the sum of squares in (2) is also called

the residual sum of squares. The currently best and most thorough reference for least

squares methods is the book by Åke Björck [1].

For our example we have x = (a0,a1,b)� ∈ R
3 and f ∈ R

m where

fi( x) = yi − x1 − x2e−x3ti ≈ 0, i = 1, . . . ,m.
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2 Linear Least Squares

If f is a linear function f (x) = b−Ax, then minimizing the length of the residual vector

r = b−Ax is equivalent of minimizing the quadratic form

Q(x) = r�r = (b−Ax)�(b−Ax) = b�b−2x�A�b+ x�A�Ax

Differentiating with respect to x and equating to zero we get the Normal Equations of

Gauss:

A�Ax = A�b. (3)

Example 2. We want to fit a linear function through given points (ti, fi), i = 1, . . . ,m.

Using

f (t) = x1 + x2t

and computing the coefficients x1 and x2 in the least squares sense is called linear
regression. Inserting the points we get the equations⎛

⎜⎝1 t1
...

...

1 tm

⎞
⎟⎠(

x1

x2

)
≈

⎛
⎜⎝ f1

...

fm

⎞
⎟⎠ .

The normal equations which can be found in every statistics textbook become⎛
⎜⎝ m ∑

i
ti

∑
i

ti ∑
i

t2
i

⎞
⎟⎠(

x1

x2

)
=

⎛
⎝ ∑

i
fi

∑
i

ti fi

⎞
⎠ .

2.1 Normal Equations and Condition

It is well known that when solving a linear system of equations Ax = b with A ∈ R
n×n,

the relative error of numerically computed solution x̃ is

||x̃− x||
||x|| 	 ||A−1|| ||A||︸ ︷︷ ︸

κ
condition number

ε (4)

where ε denotes the machine precision. If we use as matrix norm the 2-norm then the

condition number is computed by

κ =
σmax(A)
σmin(A)

= cond(A) in MATLAB.

We have to expect that the numerical solution may deviate by about κ units in the last

digit from the exact solution.

For the least squares problem Golub and Pereyra [4] showed that

||x̃− x||
||x|| 	

(
2κ +κ2 ||r||

||A|| ||x||
)

ε, where κ := ||A|| ||A+|| = σ1(A)
σr(A)

, (5)
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with A+ the Pseudoinverse and r the rank of the matrix (see Section 4).

Equation (5) tells us again what accuracy we can expect from the numerical solu-

tion. We have to distinguish between good and bad models. For good models, i.e. if the

residual ||r|| is small, the error is proportional to κ as for linear equations (4). However,

when the model is bad, i.e. when ||r|| is large then the error is proportional to κ2. Using

the normal equations, the error is always proportional to κ2 since κ(A�A) = κ(A)2.

Forming A�A also results in a loss of information as a famous example by P. Läuchli

shows:

A =

⎛
⎝ 1 1

δ 0

0 δ

⎞
⎠ , A�A =

(
1+δ 2 1

1 1+δ 2

)
.

If δ <
√

ε (with ε machine precision) then numerically 1 + δ 2 = 1 and the matrix of

the normal equations becomes singular though A has also numerically rank 2.

2.2 Avoiding Normal Equations

When solving linear systems Ax = b with A ∈ R
n×n by Gaussian elimination we use of

the fact that equivalent systems have the same solutions:

Ax = b ⇐⇒ BAx = Bb if B is nonsingular.

For a system of equations Ax ≈ b to be solved in the least squares sense it is no longer

true that multiplying by a nonsingular matrix B leads to an equivalent system. The

transformation matrices have to be orthogonal (i.e. B�B = I):

Ax ≈ b ⇐⇒ BAx ≈ Bb if B is orthogonal.

This is clear from the fact that r = b−Ax and Br = Bb−BAx have the same length

‖Br‖2 = (Br)�(Br) = r�B�Br = r�r = ‖r‖2. Using the QR-decomposition of A we

obtain an equivalent system by multiplying with B = Q�:

A = Q
(

R
0

)
⇒ Q�Ax =

(
R
0

)
x ≈

(
y1

y2

)
, with

(
y1

y2

)
:= Q�b.

The square of the norm of the residual becomes

||r||2 = ||y1 −Rx||2 + ||y2||2,

and is obviously minimal for x where

Rx = y1, x = R−1y1 and min ||r|| = ||y2||.

This approach to solve a least squares problem is numerically preferable to the normal

equations, since it leaves the condition number unchanged: κ(A) = κ(R). This is true

because the singular values are not changed by orthogonal transformations.
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2.3 Elementary Orthogonal Matrices

There are two elementary orthogonal matrices useful for transforming Ax ≈ b to

Rx = y1.

Definition 1. P = I − uu� with ||u|| =
√

2 is an elementary orthogonal Householder

matrix.

P is used to introduce zeros in a matrix. The basic transformation is to map a given

vector x to a multiple of the first unit vector: Px = σe1. Since P is orthogonal we have

‖Px‖2 = ‖x‖2 = σ2 thus σ = ±||x||. Furthermore

P = (I −uu�)x = x−u(u�x) = σe1,

thus u(u�x) = x−σe1 and we obtain by normalizing

u =
x−σe1

||x−σe1||
√

2.

We choose the sign of σ to avoid cancellation in computing x−σe1:

σ =
{ ||x||, x1 < 0

−||x||, x1 ≥ 0
.

Doing so the Householder-vector becomes

u =
x−σe1√||x||(|x1|+ ||x||) .

Definition 2. An elementary Givens rotation is the matrix S(i, j,α), with 1 ≤ i < j ≤ n,
is an identity matrix with 4 elements changed: sii = s j j = cosα , si, j = −s ji = sinα .

S(i, j,α) is used to rotate elements to zero. Given x, we want the transformation x := Sx
to change xi and x j �= 0 such that xnew

j = 0. Let s = sinα and c = cosα . Because xnew
j =

sxi − cx j = 0 we get

cot =
xi

x j
, s =

1√
1+ cot2

, c = s× cot.

Note that we do not need to compute the angle α explicitly to determine the matrix

S(i, j,α). To compute the QR decomposition of a matrix A we now can apply Givens

rotations to introduce zeros below the diagonal.

Example 3. The following problem can be stated as least squares problem, though there

are no measurement errors. We consider two straight lines g and h in space. Assume they

are given by a point and a direction vector:

g : X = P+λ r
h : Y = Q+ μs

12



If they intersect then there must exist a λ and a μ such that P+λ r = Q+μs. Rearrang-

ing the equations we obtain⎛
⎝ r1 −s1

r2 −s2

r3 −s3

⎞
⎠(

λ
μ

)
=

⎛
⎝Q1 −P1

Q2 −P2

Q3 −P3

⎞
⎠ (6)

a system of three linear equations with two unknowns. If the equations are consistent we

can use two of them to determine the intersection point. If the straight lines are warped

(and Equations (6) have no solutions) then we may be interested to find the the point

X on g and Y on h which are closest, i.e. for which the distance vector r = X −Y has

minimal length : ‖r‖2 = min . Thus we are interested to solve Equations (6) as a least

squares problem.

Applying three Givens rotations annihilating the (2,1), (3,1) and the (3,2) element

of the matrix we obtain an equivalent least squares problem:⎛
⎝ r11 r12

0 r22

0 0

⎞
⎠(

λ
μ

)
=

⎛
⎝ y1

y2

y3

⎞
⎠

which tells us all we want to know: if y3 = 0 the lines intersect and solving by back-

substitution (
r11 r12

0 r22

)(
λ
μ

)
=

(
y1

y2

)
for λ and μ we get the parameters which define the intersection point. If y3 �= 0 then

the parameters define the two nearest points and |y3| is their distance.

3 Non-Linear Least Squares

We recall first Newton’s method for a non-linear system of n equations for n unknowns.

We want to find x such that f (x) = 0. Expanding f at some approximation xk we obtain

f (x) ≈ f (xk)+ J(xk)h, with h = x− xk,

where J(xk) denotes the Jacobian evaluated at xk,

J(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
...

...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Instead of solving f (x) = 0 we solve the linearized system f (xk)+ J(xk)h = 0 for the

Newton correction h and obtain a (hopefully better) approximation xk+1 = xk +h.

13



Given now m non-linear equations with n unknowns (n ≤ m) we want to solve

f (x) ≈ 0 in the least squares sense, that is, we want

Φ(x) :=
1

2
‖ f (x)‖2 = min . (7)

Necessary for minimizing Φ(x) is gradΦ = 0. We want to express this condition in f :

∂Φ(x)
∂xi

=
m

∑
l=1

fl(x)
∂ fl

∂xi
,

or in matrix notation

gradΦ(x) = J(x)� f (x).

Thus we obtain as a necessary condition for minimizing Φ(x) a nonlinear system of n
equations in n unknowns:

J(x)� f (x) = 0.

We want to compute a solution using Newton’s method. We need the Jacobian of

gradΦ(x) which is the Hessian of Φ(x). If xk is an approximation the we obtain the

Newton correction by solving a linear system:

hessΦ(xk)h = −J(xk)� f (xk).

Let us express the Hessian also by the function f . We compute the second derivatives:

∂Φ(x)
∂xi

=
m

∑
l=1

fl(x)
∂ fl

∂xi
(8)

∂ 2Φ(x)
∂xi∂x j

=
m

∑
l=1

∂ fl

∂x j

∂ fl

∂xi
+

m

∑
l=1

fl(x)
∂ 2 fl

∂xi∂x j
. (9)

Now ∂ 2 fl/∂xi∂x j is the i j-element of the Hessian of fl(x). Furthermore (cJi denotes

the i-th column of the matrix J)

m

∑
l=1

∂ fl

∂x j

∂ fl

∂xi
= cJ�j cJi.

Therefore we obtain in matrix notation

hessΦ(x) = J�J +
m

∑
l=1

fl(x)hess fl(x).

A Newton step for the non-linear least squares problem f (x) ≈ 0 becomes

1. solve for the correction h the linear system(
J(xk)�J(xk)+

m

∑
l=1

fl(xk)hess fl(xk)

)
h = −J(xk)� f (xk) (10)
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2. iterate: xk+1 = xk +h.

Simplifications: The matrix for the computation of the correction h in Equation

(10) is complicated. Therefore an approximation of the sum of the Hessians, called

Tikhonov regularization or method of Levenberg-Marquart, is considered:(
J(xk)�J(xk)+ τ2D2

)
h = −J(xk)� f (xk) ⇐⇒

(
J(xk)
τD

)
h ≈

(
f (xk)

0

)
.

The matrix D is often chosen as diagonal matrix. It is straightforward to see that this

way one minimizes the expression

||J(xk)h− f (xk||2 + τ2||Dh||2,
which is again equivalent to the problem

min ||J(xk)h− f (xk||2 subject to ||Dh||2 ≤ α2

for some α . Since by that the the stepsize h is restriced to ||Dh||2 ≤ α2 the resulting

method is called Trust Region Method.

4 The Singular Value Decomposition (SVD)

Theorem 1. (Singular Value Decomposition) Let A ∈ R
m×n with m ≥ n. Then there ex-

ist orthogonal matrices U ∈R
m×m, V ∈R

n×n and a diagonal matrix Σ = diag(σ1, . . . ,σn)∈
R

m×n with σ1 ≥ σ2 ≥ . . .≥ σn ≥ 0, such that A = UΣV� holds. If σr > 0 is the smallest
singular value greater than zero then the matrix A has rank r.

Definition 3. Let A = UΣV� be the singular value decomposition with

Σ =
(

Σr

0

)
∈ R

m×n, Σr := diag(σ1, . . . ,σr,0, . . . ,0) ∈ R
n×n

The the matrix A+ = V Σ+U� with

Σ+ = (Σ+
r 0) ∈ R

n×m, Σ+
r := diag(

1

σ1
, . . . ,

1

σr
,0, . . . ,0) ∈ R

n×n (11)

is called the pseudo-inverse of A.

The SVD allows us to compute the general solution of the linear least squares prob-

lem with (possibly) rank deficient coefficient matrix Ax ≈ b:

1. Compute the SVD: [U S V] = svd(A).

2. Make a rank decision, i.e. choose r such that σr > 0 and σr+1 = · · · = σn = 0. This

decision is necessary because rounding errors will prevent the zero singular values

to be exactly zero.

3. Set V1=V[:,1:r], V2= V[:,r+1:n], Sr=S[1:r,1:r], U1=U[:,1:r].

4. The solution with minimal norm is xm=V1*(Sr\U1’*b).
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5. The general solution is x = xm + V2*c with an arbitrary c ∈ R
n−r.

If A has full rank (rank(A) = n) then the solution of the linear least squares problem

is unique: x = V Σ−1U�b. It is computed in Matlab by the statement x = A\b.

If A has rank(A) = r < n then the solution is not unique and given in theory by

x = A+b+(I −A+A)w, w arbitrary.

The SVD gives us explicit expressions for the various projectors on the four fundamen-

tal subspaces:

1. PR(A) = AA+ = U1U�
1 2. PR(A�) = A+A = V1V�

1

3. PN (A�) = I −AA+ = U2U�
2 4. PN (A) = I −A+A = V2V�

2

Theorem 2. Let A = UΣV� and V = [v1, . . . ,vn]. Then the problem

‖Ax‖2 = min, subject to ‖x‖2 = 1 (12)

has the solution x = vn and the value of the minimum is min‖x‖2=1 ‖Ax‖2 = σn.

Example 4. We consider the problem of fitting lines by minimizing the sum of squares
of the distances to given points (see [2], Chapter 6). In the plane we can represent a

straight line uniquely by the equations

c+n1x+n2y = 0, n2
1 +n2

2 = 1. (13)

The unit vector (n1,n2) is orthogonal to the line. A point is on the line if its coordinates

(x,y) satisfy the first equation. On the other hand if P = (xP,yP) is some point not on

the line and we compute

r = c+n1xP +n2yP

then |r| is its distance from the line. Therefore if we want to determine the line for

which the sum of squares of the distances to given points is minimal, we have to solve

the constrained least squares problem⎛
⎜⎜⎜⎝

1 xP1
yP1

1 xP2
yP2

...
...

...

1 xPm yPm

⎞
⎟⎟⎟⎠

⎛
⎝ c

n1

n2

⎞
⎠≈

⎛
⎜⎜⎜⎝

0

0
...

0

⎞
⎟⎟⎟⎠ subject to n2

1 +n2
2 = 1. (14)

Let A be the matrix of the linear system (14). Using the QR decomposition A = QR we

can reduce the the linear system to Rx ≈ 0, i.e., the problem becomes⎛
⎝ r11 r12 r13

0 r22 r23

0 0 r33

⎞
⎠

⎛
⎝ c

n1

n2

⎞
⎠≈

⎛
⎝0

0

0

⎞
⎠ subject to n2

1 +n2
2 = 1. (15)

Since the nonlinear constraint only involves two unknowns; we now have to solve(
r22 r23

0 r33

)(
n1

n2

)
≈

(
0

0

)
, subject to n2

1 +n2
2 = 1. (16)

The solution is obtained using Theorem 2. Inserting the values into the first equation of

(15), we then can compute c.
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5 Constrained Least Squares

Given the matrices Am×n, Cp×n and the vectors b and d we are interested to find a vector

x such that

||Ax−b||22 = min subject to Cx = d. (17)

We are interested in the case p ≤ n ≤ m. A solution exists only if the constraints are

consistent i.e. if d ∈ R(C). The classical solution is obtained by minimizing the La-

grangian

L(x,λ ) =
1

2
||Ax−b||2 +λ�(Cx−d ).

Setting the partial derivatives to zero we obtain:

∂L
∂x

= A�(Ax−b)+C�λ = 0 and
∂L
∂λ

= Cx−d = 0.

Thus (
A�A C�

C 0

)(
x
λ

)
=

(
A�b

d

)
Normal Equations. (18)

The matrix of the Normal Equations (18) is symmetric, however, not positive definite.

So we cannot use the Cholesky decomposition, we need Gaussian elimination with

pivoting to solve the system.

If both A and C have full rank then we may make use of the structure. Consider the

ansatz for an LU-decomposition:(
A�A C�

C 0

)
=

(
R� 0

G −U�

)(
R G�
0 U

)
.

Multiplying the right hand side and equating terms we obtain

R�R = A�A thus R = chol(A’*A)

R�G� = C� or GR = C thus G = CR−1

and

GG�−U�U = 0 thus U = chol(G*G’).

The whole algorithm becomes:

1. Compute the Cholesky decomposition R�R = A�A.
2. Solve for G� by forward substituting R�G� = C�.
3. Compute the Cholesky decomposition U�U = GG�
4. Solve for y1 and y2 by forward substituting(

R� 0

G −U�

)(
y1

y2

)
=

(
A�b

d

)
5. Solve for x and λ by back substituting(

R G�
0 U

)(
x
λ

)
=

(
y1

y2

)
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There are several possibilities to avoid the numerically not favored Normal Equa-

tions (18) by directly eliminating the constraints. In the following we present the Null
Space Method. Since we assume that C has full rank p, we can express the the general

solution of Cx = d using the QR decomposition. We compute the QR decomposition of

C�:

C� = [Q1,Q2]
(

R
0

)
.

With Q = [Q1,Q2] and the new unknowns
(y1y2

)
:= Q�x the constraints become

Cx = [R�,0]Q�x = R�y1 = d.

The general solution of the constraints is y1 = R−T d and y2 arbitrary. Introducing this

in ||Ax−b|| we get:

Ax = AQQ�x = AQ
(

y1

y2

)
= A(Q1y1 +Q2y2)

and the problem becomes an unconstrained least squares problem

||Ax−b|| = ||AQ2y2 − (b−AQ1y1)|| = min . (19)

Thus we obtain the algorithm:

1. compute the QR decomposition of C�: [Q, R] = qr(C’)
2. compute y1 by forward substitution R�y1 = d and x1 = Q1y1.
3. Form Ã = AQ2 and b̃ = b−Ax1.
4. Solve Ãy2 ≈ b̃.

5. x = Q
(

y1

y2

)
= x1 +Q2y2.

function [x] = lsqlcn(A,C,b,d);

%

% x = LSQLCN(A,C,b,d) solves the constrained least squares problem

% ||Ax-b|| = min subject to Cx=d by the Nullspace Method.

% For the change of variables and for solving the reduced least

% squares problem the Matlab built-in Householder QR decomposition

% is used.

[p n] = size(C);

[Q R ] = qr(C’);

y1 = R(1:p,1:p)’\d;

x1 = Q(:,1:p) *y1;

y2 = (A*Q(:,p+1:n))\(b -A*x1);

x = x1 + Q(:,p+1:n)*y2;

Example 5. If we interpolate the 7 points

>> x = [ 1; 2.5; 3; 5; 13; 18; 20];

>> y = [ 2; 3; 4; 5; 7; 6; 3];

>> m = length(x);

>> plot(x,y,’o’); hold;
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by the interpolating polynomial of degree 6

>> xx = 1:0.1:20;

>> P = polyfit(x,y,6); plot(xx, polyval(P,xx),’:’)

we obtain the dashed curve shown in Figure 1. The interpolation is really not what one

would like. We can obtain a smoother approximation e.g. by giving up the interpolation

Fig. 1. Polynomial Interpolation

condition or maybe relaxing it by demanding interpolation only for a few points and a

least squares fit for the remaining others.

In MATLAB polynomials of degree d are represented with coefficients p as

Pd(x) = p1xd + p2xd−1 + · · ·+ pdx+ pd+1.

The interpolation- and approximation-conditions Pd(xi) = yi resp. Pd(xi) ≈ yi lead to a

constraint least squares problem

V p 	 y,

with the m× (d +1) Vandermonde matrix V = (vi j) with vi j = xd− j+1
i . We now choose

the degree d = 4 and want to interpolate p = 3 points: the first, the last and the fifths.

>> degree = 4;

>> n = degree+1;

>> V(:,n) = ones(m,1);

>> for j = degree:-1:1

>> V(:,j) = x.*V(:,j+1);

>> end

>> p = 3; % number of interpolating points

>> in = [1 5 7 2 3 4 6]; % permute equations: the first p interpolate

We reorder the equations so that the first 3 are the one with the interpolation conditions:

>> Vp = V(in,:); yp = y(in);

>> C = Vp(1:p,:); A = Vp(p+1:m,:);
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>> d = yp(1:p); b = yp(p+1:m);

>> % Solve constrained least squares problem

>> P1 = lsqlcn(A,C,b,d);

P1’ = -0.0005 0.0176 -0.2367 1.6531 0.5665

>> plot(xx, polyval(P1,xx))

>> [V*P1 y]

ans =

2.0000 2.0000

3.4758 3.0000

3.8313 4.0000

4.8122 5.0000

7.0000 7.0000

5.9036 6.0000

3.0000 3.0000

As we can see from Figure 1 we obtain a much better interpolation this time. Com-

paring V ×P1 with y we see the three interpolation points and that the others are only

approximated by least squares.
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1. Åke Björck, “Numerical Methods for Least Squares Problems”, SIAM, 1996.
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Abstract. Mathematical models play a vital role in present-day epidemiology.
The aim of this material is to provide an introduction to mathematical epidemi-
ology, that is, to the art of mathematical modeling of infectious diseases. We in-
troduce the fundamental concepts and principles of modeling infectious diseases
in humans and animals, starting with the basic epidemiological models that as-
sume constant host population size. We show how these simple models can help
us interpret data on infectious diseases and facilitate designing of strategies for
controlling them. Although the assumptions behind these basic models are neces-
sarily unrealistic, their main value is in telling us what is possible in a system as
simple and abstract as possible where everything except the actual host-parasite
interaction is removed. In addition, these simple models can capture many of the
qualitative properties of more complex, detail-rich models, and the latter mod-
els actually use the simple ones as the basic building blocks. Next, we consider
dynamic models of wildlife infections, as these infections tend to increasingly af-
fect humans. In these models, the host population size is no longer assumed to be
constant, but rather is subject to its own dynamics, whether exponential growth,
logistic growth, or constant rate immigration. The wildlife models are often used
to explore the extent to which parasites can depress the (natural) growth rate
or steady state of their host populations and what characteristics of infectious
agents are most decisive in this. In addition, the wildlife models can be adequate
descriptions of infectious disease dynamics in human populations in developing
countries. Finally, we present models of a few specific infectious diseases, and
discuss their epidemiological as well as ecological consequences.

Note: This material is intended to be lecture notes, not an original scientific trea-
tise. As such, it is mostly composed of the work of others (books and scientific
papers), to which the material refers where appropriate. Although I have strived to
not repeat the original wording, it might be that some portions of the text have re-
mained virtually unchanged compared with the original work. This by no means
implies that I credit the work of others to myself. Rather, it means that the original
wording was so dense and accurate that I could hardly write it any better.

1 Introduction

1.1 The Why and How of Mathematical Modeling

The word “model” is not unambiguous, but in science, a model is generally considered
to be a representation of (a part of) reality that we aim to study. One familiar type of
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models is physical models – a material, pictorial, or analogical representation of (a part
of) an actual system, such as scale material models used in wind tunnel experiments or
flight simulators. In many fields of science, however, mathematical models play a far
more important role, especially in studies of dynamics of all sorts of systems. Math-
ematical models represent the systems examined in the form of mathematical objects
and their relationships, often in the form of various types of (dynamic) equations or in
the form of governing rules assembled as computer algorithms.

Unfortunately, only the simplest mathematical models are analytically tractable, that
is, can be completely solved using standard tools of mathematical analysis. As model
complexity increases, all that one can usually obtain is numerical solutions correspond-
ing to specific initial conditions. For models of intermediate complexity, analytical tools
and numerical simulations are standardly combined and complement one another.

Whether formally analyzed or run as numerical simulations, mathematical models
are useful experimental tools for building and testing theories, generating hypotheses,
assessing quantitative conjectures, answering specific questions, determining system
sensitivity to changes in parameter values, and estimating key parameters from data.
Models often identify behaviors that are unclear in experimental data, often because
data are hardly reproducible and the number of data points is often limited and subject
to measurement errors. From the applied perspective, models can be used to supplant
experiments that we, for some reason, cannot conduct practically, and/or to assess and
compare various management actions before they are actually employed.

Practically, mathematical modeling proceeds in several steps [31]:

1. Formulate the question: formulate the question of interest in terms of the original
scientific discipline;

2. Determine the basic ingredients: choose the ingredients perceived as essential for
addressing the question, such as variables, their interactions, time scales and pa-
rameters;

3. Qualitatively describe the examined system through diagrams or tables;
4. Quantitatively describe the examined system by writing down equations or govern-

ing rules;
5. Solve the model: analyze the equations, run numerical simulations, carry out anal-

ysis relevant to the question of interest;
6. Perform checks and balances: check whether the results are in agreement with what

is known, if not, refine the model and repeat steps 2–5;
7. Relate the results back to the question: interpret the results in terms of the orig-

inal scientific discipline, discuss generality of the results, embed them in current
theories, suggest potential experiments.

Interestingly, the contribution of the original scientific discipline can mostly be detached
from the contribution of mathematics; we can often put aside the real world when solv-
ing mathematical models (steps 4–5).

Any model is necessarily a simplified representation of reality – one is always forced
to prioritize, that is, to consider only those aspects of the examined system that are es-
sential for its understanding and/or prediction of its behavior, and neglect those aspects
that seem marginal for the question of interest. Because of this, no model can be con-
sidered the best one; there is always a place for improvement, no matter how large. It
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is also important to realize that from no model can one require more than conditional
predictions of the type “what effects would a given situation imply if it occurs”.

1.2 What Is a Parasite?

Epidemiology deals with parasites. In completing their life cycle, parasites need one or
more host species. A Parasite may spend most of its life in such a host-parasite associ-
ation, or alternatively only a short periods of time, adopting a free-living mode for the
major part of its life cycle. During the parasitic phase of their life cycle, parasites depend
on their hosts for synthesis of one or more nutrients essential for their own metabolism.
Also, it is within their hosts that many parasites reproduce. The host-parasite associ-
ation is traditionally regarded as obligatory for the parasite and harmful for the host.
A species should therefore satisfy three conditions to be considered parasitic. It should
(i) utilize its host as a habitat; (ii) nutritionally depend on it; and (iii) cause harm to
its host. The parasite, although potentially inducing the death of the host, does not kill
its host as a prerequisite for successful development (this distinguishes parasites from
parasitoids).

Parasites exhibit a high between-species variability in the degree of harm they cause
to their hosts. At one extreme, deaths will result from a parasite infection, but (in con-
trast to parasitoids) such host deaths will also kill the parasites contained within. At the
other extreme lie symbionts that live on or in the host and cause negligible, if any, harm
to the host even if present in very large numbers.

The effect of parasites on the hosts varies. The most common effect of parasites is
presumably an increase in the mortality rate of the affected hosts. Parasitism can also
lead to a reduced birth rate, which can even reach the state of parasitic castration [23,
29]. Interestingly, by decreasing the energy outlay on reproduction due to a fecundity-
reducing parasite, infected individuals with lowered reproduction might live longer [15,
5, 33]. Parasites can also induce morphological changes in the hosts or changes in host
behavior [34], or bias the host’s sex ratio at birth [21], so as to increase their transmis-
sion efficiency.

1.3 Role of Mathematical Modeling in Epidemiology

Identification of new infectious diseases, including Lyme disease, the human immun-
odeficiency virus (HIV) as the etiological agent of the acquired immunodeficiency syn-
drome (AIDS), hepatitis C, or the severe acute respiratory syndrome (SARS), frequent
reappearance of such infections as plague, cholera, and viral hemorrhagic fevers (Ebola,
Marburg, etc.), emergence of antibiotic-resistant strains of tuberculosis or gonorrhea, or
the apparently never-ending fight against malaria, all maintain a general interest in in-
fectious diseases and their control. This interest is also fed by many recent popular
books, movies and television series that have given us exciting accounts of the emer-
gence and detection of new diseases. It is quite obvious that human or animal invasions
of new ecosystems, increased international travel, and changes in social and economic
patterns will continue to provide opportunities for new and existing infectious diseases.

Scientific experiments are usually the means to obtain information and to test hy-
potheses. Experiments in epidemiology are often difficult or impossible to design. Even
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if we were able to arrange an experiment there are serious ethical questions involved
in withholding treatment from a control group. Sometimes data may be collected from
reports of epidemics or of endemic disease levels, but they are often incomplete or in-
accurate. Hence, parameter estimation and model fitting are very difficult.

In spite of, or perhaps because of this, the ecological and public health challenges
that infectious diseases present have been addressed with mathematical models. Math-
ematical models have become important tools in understanding the fundamental mech-
anisms that drive the spread of infectious diseases and in suggesting strategies for their
control. In particular, understanding the transmission characteristics of infectious dis-
eases can lead to better approaches to reducing the transmission of these diseases. More
specifically, mathematical models (Pauline van den Driessche, unpublished material):

1. Help clarify assumptions, variables, and parameters, e.g. pathways involved in par-
asite spreading or the degree of heterogeneity needed;

2. Provide conceptual results such as thresholds for disease invasion or the plausibility
of parasite eradication;

3. Can contribute to the design and analysis of epidemiological surveys, especially by
suggesting crucial data that should be collected;

4. Can be used as experimental tools for testing control measures and determining
sensitivities to changes in parameter values;

5. Can be used to compare and optimize the costs and efficiency of various detection,
prevention and control programs;

6. Can provide, when parasites are used as control agents, qualitative insights into the
circumstances under which parasites are capable of regulating their host population,
and of doing so in an adequate and stable manner.

Mathematical modeling of infectious diseases has a long history in mathematical
biology, starting with the works of Sir Ronald Ross at the beginning of the 20th cen-
tury and of William Ogilvy Kermack and Anderson Gray McKendrick in the 1920s
and 1930s. In recent years, it has even become part of epidemiology policy decision-
making in several countries, including the United Kingdom, Canada, and the United
States. Modeling studies of diseases such as HIV/AIDS, BSE, foot and mouth disease,
measles and SARS have had an impact on public health policy in these countries. Apart
from these hot spots, a tremendous variety of mathematical models have been devel-
oped, analyzed, and applied to a large number of infectious diseases, such as malaria,
rabies and Lyme disease. The majority of epidemiological models focus on human dis-
eases, accounting for aspects such as passive immunity, vaccination, gradual loss of
vaccine- and disease-acquired immunity, stages of infection, vertical transmission, dis-
ease vectors, age structure, social and sexual mixing groups, and spatial spread. Anal-
ogous models have also been developed for animal diseases, an issue of increasing
importance as global climate changes and other anthropogenic stressors render natural
populations of animals increasingly susceptible to diseases contracted by spillover from
domestic animals, as well as render humans increasingly susceptible to diseases orig-
inally restricted to wildlife. The breadth of the subject can be appreciated by flipping
through the books on epidemiology modeling, such as [9] or [20].

There is always a trade-off between simple (or strategic or generic) models which
omit most details and are designed to highlight general qualitative behavior of a host-
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parasite interaction, and detailed (or tactic or specific) models usually designed for
specific diseases and situations including short-term quantitative predictions. Detailed
models are often impossible to solve analytically and hence their usefulness for theo-
retical purposes is limited, although their practical value may be high. In this material
we deal with simple models in order to establish broad principles of mathematical epi-
demiology. Furthermore, these simple models have an additional value as they are the
building blocks of models that include more detailed structure. As a matter of fact, we
will never be able to predict the precise course of a disease, or which individuals will
be infected. The best that we can hope for are models that provide confidence intervals
on disease behavior and determine the risk of infection for various groups of hosts.

1.4 Basic Concepts in Epidemiology

It is useful to distinguish two broad groups of parasites, microparasites and macropar-
asites, as differences in their life cycles and their impact on hosts call for development
of different epidemiological models. Microparasites, the term used to describe viruses,
bacteria, fungi and some (parasitic) protozoa, are characterized by small size (they gen-
erally cannot be seen with the naked eye), short generation times, extremely high rates
of direct reproduction within the host (usually inside the host cells), and a tendency to
induce immunity to reinfection. The duration of infection is typically short relative to
the expected lifespan of the host. Microparasites can complete their full life cycle inside
a single host.

Macroparasites can be either external (ectoparasitic) or internal (endoparasitic), and
include some (parasitic) protozoa, (parasitic) helminths, such as nematodes and tape-
worms, and some arthropods, such as ticks and mites. Unlike microparasites, they are
large enough to be seen with the naked eye, they tend to have much longer generation
times, direct multiplication within the host is either absent or occurs at a low rate, and
they elicit immune responses that tend to be of a relatively short duration. Macropara-
sitic infections therefore tend to be of a persistent nature, with hosts being continually
reinfected. Macroparasites typically need more than one host species to complete their
life cycle. Last but not least, many host responses to macroparasites generally depend
on the number of parasite individuals present in a given host. We will not treat models
of macroparasitic infections in this material.

Parasites may complete their life cycle by passing from one host to the next either
directly or indirectly via one or more intermediate host species. The intermediate host
is an organism in which the parasites reproduce asexually or in which the parasitic lar-
vae simply grow. The intermediate hosts are mostly invertebrates, but can also include
vertebrates, including humans. The definitive host, on the other hand, is an organism in
which the parasites mature and sexually reproduce (if they have the ability to do so),
and in which the life cycle of the parasite begins as well as ends. The definitive host
can be the only host of a parasite. Direct transmission is achieved by direct physical
contact between hosts (as in, for example, sexually transmitted diseases) or by trans-
mission stages of the parasite which leave a host and are then picked up by another
host by inhalation (e.g. influenza), ingestion (such as pinworms) or penetration of the
skin (e.g. hookworms). A special case of direct transmission arises when an infection
passes from a parent to its unborn offspring (egg, embryo or host chromosomes), as
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can happen in AIDS/HIV, syphilis and many viral infections of arthropods; this process
has been termed vertical transmission, as opposed to the variety of horizontal trans-
mission processes just described. Indirect transmission occurs when the life cycle of
the parasite involves one or more intermediate hosts. It can involve biting by vectors
(mosquitoes, flies, ticks, and others) that serve as intermediate hosts, or penetration by
free-living transmission stages that are produced by other (e.g. molluscan) intermediate
hosts. The parasite can also be ingested when an infected intermediate host is eaten by
the predatory or scavenging definitive host.

Infectious diseases can display two different temporal patterns, epidemic and en-
demic. An epidemic, which acts on a short time scale, may be described as a sudden
outbreak of a disease that infects a substantial portion of the population in a region
before it disappears. Epidemics usually leave many individuals untouched. Epidemics
such as the 2002 outbreak of SARS, the Ebola virus and avian flu are just some recent
examples. An endemic situation is one in which a disease is always present. We observe
relatively small fluctuations in monthly cases counts, and only slow increase or decrease
over the course of years. Diseases such as malaria, typhus, and cholera are endemic in
many parts of the world. One can also think of an intermediate scenario where diseases
are constantly present but outbreak frequently. Stochastic effects can sometimes play a
role in classifying a disease as epidemic or endemic. Ultimately endemic diseases, the
prevalence of which settles to be so small as to give a high probability of their stochastic
fade-out, can actually be viewed as recurrent epidemics. Other useful concepts that we
occasionally use are summarized in Table 1.

1.5 Basic Reproduction Number R0

A quantity of central importance in epidemiology is the basic reproduction number,
traditionally denoted as R0. From time to time, people also call it the basic reproductive
rate or ratio, or the basic reproduction ratio. For microparasitic infections (our focus
in this material), R0 is defined as the mean number of secondary infections produced
when one infected individual is introduced into a host population where everyone is
susceptible. Values of R0 for a number of infectious diseases are given in Table 2.

For most epidemiological models (and in fact all models in this material), an in-
fection invades a fully susceptible host population if R0 > 1 and dies out if R0 < 1. If
R0 > 1 (R0 < 1), then on average each infectious individual produces more (less) than
one new infection. Thus, the basic reproduction number R0 is a threshold quantity that
determines when an infection invades a host population and when it does not. Examples
of models where infections can invade hosts even for some R0 < 1 include models in-
volving stochasticity [20] and models in which disease dynamics are seasonally forced
[3, and references therein].

For epidemiological models with a single infected compartment, R0 is simply the
product of the contact rate, the mean duration of the infection, and the fraction of in-
fected hosts surviving the latent period of the infection (provided the model works with
the latent period). For more complex models that involve several infected compart-
ments (e.g. models with age structure), the simple heuristic definition of R0 is insuffi-
cient. Van den Driessche and Watmough [36] presented a precise definition of R0 for a
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Table 1. Definition of some common terms in epidemiology.

Term Definition

Contact rate The average number of “adequate” or potentially infectious contacts
per host individual per unit time. An adequate or potentially infectious
contact is one that is sufficient for transmission of infection from an
infective to a susceptible.

Disease prevalence Fraction of infected individuals in the population. This fraction can vary
with different age classes, for example.

Force of infection The per capita rate at which susceptibles catch the disease or equiva-
lently the probability per unit time that a susceptible individual becomes
infected. Note that its inverse is the mean time an individual spends in
the susceptible class, which is the mean age at infection provided all in-
dividuals are born susceptible. Force of infection can likewise vary with
different age classes, for example.

Disease incidence The rate of occurrence of new cases or equivalently the number of new
cases per unit time (= force of infection × number of susceptibles).
Also called the transmission rate. Do not confuse with prevalence –
incidence conveys information about the risk of contracting the disease,
prevalence indicates how widespread the disease is.

Virulence A measure of how much a parasite harms its host. From an evolutionary
perspective, virulence can be defined as the host’s loss of fitness due to
infection (reduced fecundity and/or increased mortality).

Mortality rate The ratio of deaths due to an infection during a given time interval and
in an area, to the population of that area; often expressed per 1000 hosts
per year.

Table 2. Some estimates of R0. After Keeling and Rohani (2008).

Infectious disease Host R0

Measles Humans (UK) 16-18
Pertussis (whooping cough) Humans (UK) 16-18
Chickenpox (varicella) Humans (UK) 10-12
Rubella Humans (UK) 6-7
Smallpox Humans 3.5-6
FIV Domestic cats 1.1-1.5
Rabies Dogs (Kenya) 2.44
Phocine distemper Seals 2-3
Tuberculosis Cattle 2.6
Influenza Humans 3-4
Foot-and-mouth disease Livestock farms (UK) 3.5-4.5
Mumps Humans 12
Poliomyelitis (polio) Humans 5
HIV Male homosexuals in England and Wales 4
HIV Female prostitutes in Kenya 11
Malaria Humans ≈ 100
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general compartmental disease transmission model based on a system of ordinary dif-
ferential equations, and a method of its calculation. R0 is defined as the mean number
of secondary infections produced by a typical infective individual in a population at a
disease-free equilibrium (DFE). If R0 < 1 then the DFE is locally asymptotically stable
and the disease cannot invade the population. On the other hand, if R0 > 1 then the DFE
is unstable and the disease can invade the host population in the sense that any trajectory
starting with a small positive size of infectives moves into the positive quadrant where
the disease persists. The method of calculation assumes a heterogeneous population
whose individuals can be classified by age, behavior, spatial location and/or stage of the
disease and which can be grouped into a finite number of homogeneous compartments;
this is sketched in Sect. 5.

The basic reproduction number R0 can be used to assess the efficiency of any disease
control policy and the likelihood that a disease may be eliminated. In general, assuming
that an infection invades a fully susceptible host population if R0 > 1 and dies out if
R0 < 1, any management action (such as vaccination) that decreases the magnitude of
R0 below 1 effectively prevents the infection from successfully invading and spreading.
We discuss some models involving vaccination in Sect. 2.3.

Closely related to R0 is the concept of replacement number R, defined as the mean
number of secondary infections produced when one infected individual is introduced
into a host population, not necessarily one where all individuals are susceptible. Some
authors use the term (effective) reproduction number instead. Although R0 is defined
only at the moment of disease invasion, R is defined at all times, and R = R0 at the mo-
ment of invasion. Because after the disease invasion everyone is no longer susceptible,
R < R0 as time goes on.

2 Basic Epidemiological Models

2.1 Models of Microparasitic Infections
Many epidemiological models of microparasitic infections use the conventional as-
sumption that the host population is held constant, independent of the presence or ab-
sence of the infection, by an unspecified mechanism. This assumption stems from a
history of medical interest in human diseases, predominantly in developed countries,
where population densities usually do remain roughly constant on time scales appro-
priate to the operation of most diseases. On the other hand, the densities of human
populations in developing countries and most animal populations need to be treated as
a dynamic variable. As expected, models with a variable host population size are of-
ten more difficult to analyze because this additional variable requires an extra equation.
We consider models with a constant host population size in this section and models in
which the host population size varies with time in Sect. 3.

For microparasitic infections, modelers distinguish several classes of hosts accord-
ing to their status with respect to the disease:
Passively immune, M If a mother has been infected, then some IgG antibodies1 are

transferred across the placenta, so that her newborn infant has temporary passive
1 IgG = immunoglobulin G. Antibodies (also called immunoglobulins) are proteins that are

found in blood or other bodily fluids of vertebrates, and are used by the immune system to
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immunity to an infection. This class contains only infants with passive immunity.
After the maternal antibodies disappear, the infant moves to the susceptible class S.
Infants who do not have any passive immunity, because their mothers were never
infected, enter the susceptible class directly.

Susceptible, S Individuals susceptible to infection; they can contract the disease if they
are exposed to it.

Exposed, E Latent period of the disease; individuals are infected but not yet infectious
and hence not yet able to pass the disease to the others. During this period the
parasite reproduces rapidly within the host but its abundance is still too low for
active transmission to other susceptible hosts.

Infectious (or infective), I Individuals that are infectious and hence capable of trans-
mitting the infection to any susceptible individual that they come into contact with.
Do not commute for infected individuals which are those who are either exposed or
infectious, E + I.

Recovered (or removed), R Individuals that were previously infected but now are nei-
ther infected nor susceptible; they now have infection-acquired immunity (perma-
nent or temporary).

Not all epidemiological models will include all of these classes, but some will include
more (such as a class of chronic carriers of the disease, [20]). In addition, many host
populations are structured to various extents, so the models must divide the heteroge-
neous population into classes within which the individuals have similar characteristics.
This division into groups can be based not only on the mode of transmission, contact
pattern, latent period, infectious period, genetic susceptibility or resistance, type and
amount of control, but also on social, cultural, economic, demographic (age or sex), or
geographic (spatial location) factors. We also stress here that the exposed and infectious
periods cannot be mistaken with the incubation (or asymptomatic) and symptomatic
periods, respectively. This is because one can transmit parasites long before becoming
symptomatic, and one can still be symptomatic while no longer infectious. Table 3 lists
incubation, latent and infectious periods for a variety of infections.

The choice of which classes to include in a model depends on the characteristics of
the modeled disease and the purpose of the model. The passively immune class M and
the exposed class E are often omitted as not crucial for the host-parasite interaction.
Acronyms are often used to name epidemiological models, and these are based on the
classes they contain and the flow patterns between these classes. So, for example, in the
MSEIR model, passively immune infants first become susceptible, then exposed, then
infectious, and finally recover with permanent immunity. An SEIRS model is similar,
but there is no passively immune class, and the immunity is only temporary so that
recovered individuals regain their susceptibility after the temporary immunity fades
away. An SIS model contains no passively immune class, no disease latency, and no
immunity whatsoever.

identify and neutralize foreign objects, such as bacteria and viruses. Antibodies are produced
by a kind of white blood cells called B cells. IgG is the only immunoglobulin that can pass
through the human placenta, thereby providing protection to the fetus in its first weeks of life
before its own immune system has developed.
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Table 3. Incubation, latent and infectious periods for a variety of viral and bacterial infections.
Table 3.1 of Anderson and May (1991).

Infectious disease Incubation Latent Infectious
period (day) period (day) period (day)

Measles 8-13 6-9 6-7
Mumps 12-26 12-18 4-8
Pertussis 6-10 21-23 7-10
Rubella 14-21 7-14 11-12
Diphtheria 2-5 14-21 2-5
Chickenpox 13-17 8-12 10-11
Hepatitis B 30-80 13-17 19-22
Poliomyelitis 7-12 1-3 14-20
Influenza 1-3 1-3 1-3
Smallpox 10-15 8-11 2-3
Scarlet fever 2-3 1-2 14-21

Given a decision on the type and number of classes involved, equations are stan-
dardly derived which describe dynamics of densities of hosts within these classes. An
ordinary differential equation classically corresponds to each class which describes the
rate of change in the size of individuals in the respective class as a result of all processes
affecting this rate. For a generic state variable X , we may formally write:

dX
dt

= rates of all processes affecting X

2.2 SIR Models

SIR models are a traditional point of departure in the exploration of infection dynamics
in any textbook on mathematical biology or epidemiology. A SIR model is composed
of susceptible (S), infectious (I), and recovered (R) classes of individuals. Assuming
hosts are born as susceptible individuals, the specific dynamic equations are as follows:

dS
dt

= rates of ... births – natural deaths – new infections

dI
dt

= rates of ... new infections – natural deaths – disease-induced deaths – recovery

dR
dt

= rates of ... recovery – natural deaths
(1)

Note that mortality in model (1) is divided into two components, natural deaths
experienced by individuals in all classes, and an extra mortality due to the disease. All
infectious hosts are commonly assumed to be equally susceptible to disease-induced
mortality, no matter how long they are infected (models do exist in which disease-
induced mortality of an infected individual is a function of the time since becoming
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infected, [7]). The number of susceptible hosts declines due to infection, while that of
infectious hosts increases at the same rate.

We shall now set down formal mathematical equations. We start with an epidemic
SIR model and go on with an endemic SIR model. Whereas epidemic models are used
to describe rapid disease outbreaks that occur in less than one year, endemic models are
used to study the impact of diseases over longer periods during which there is a renewal
of susceptible individuals by births or recovery from no or temporary immunity. The
two classic SIR models formulated and analyzed below provide a basis for an intuitive
understanding of the results of more complex epidemiological models.

Epidemic SIR Model Epidemics have often had a large impact on population sizes
and historical events. For example, the Black Death, widely thought to have been an
outbreak of bubonic plague caused by the bacterium Yersinia pestis, caused population
decreases of between 25% and 50% and led to social, economic, and religious changes
in Europe in the 14th century. A neat account of the major epidemics occurring in the
past and how they affected human populations is provided by [8].

One of the questions that first attracted the attention of researchers interested in the
spread of infectious diseases was why diseases suddenly appear in a community and
then disappear just as suddenly without infecting everyone in the community. It was
actually one of the early triumphs of mathematical epidemiology that a simple model
was able to predict just this type of behavior. The model proposed in 1927 by Kermack
and McKendrick and especially its special case that has become known as the Kermack-
McKendrick epidemic model – which we shall now study – forms the core of virtually
any epidemiological model developed so far.

Public health officers confronted with a possible epidemic are always interested in
how severe the epidemic will be. This question can actually be made more precise in
a number of ways. For example, when will the epidemic start? How many individuals
will be affected and thus require treatment? What is the maximum number of people
needing care at any particular time? How long will the epidemic last? How much good
do vaccination or quarantine programs do in reducing severity of the epidemic? These
are some of the questions we would like to study with the aid of mathematical models
and we indeed can do so.

The Kermack-McKendrick epidemic model is based on relatively simple assump-
tions on the rates of flow between different classes of hosts (e.g. [7]). First, epidemics
are assumed to be sufficiently short for births and natural deaths to not affect their
course, so that births = natural deaths = 0 in our conceptual model (1). Second, diseases
to be modeled are assumed to be virtually non-lethal, so that disease-induced deaths
= 0 in (1)2. We are thus left to specify the rate at which new infections occur and the
rate at which infectious individuals recover. As a matter of fact, description of disease
transmission, determining the rate at which new infections occur, is the core part of any
epidemiological model and is of crucial importance in determining disease dynamics.

In the following, we assume the disease transmission rate to equal Φ(N)pSI/N, for
which we provide an explanation in Box 1; Φ(N) is the per-individual contact rate and

2 In Sect. 2.4, we will allow the possibility that some infectives recover while the others die of
the disease.
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p is the probability that the disease will be transmitted when an infective individual
and a susceptible individual meet. Now, assuming that Φ(N) is constant, Φ(N) = φ ,
the disease transmission rate becomes β SI/N, with β = φ p. This form is commonly
referred to as standard incidence or frequency-dependent transmission. Alternatively,
assuming Φ(N) to be proportional to host population size, Φ(N) = φN, the disease
transmission rate becomes β SI, with β = φ p. This form usually termed mass action
incidence or density-dependent transmission, has been the most widely used model of
disease transmission, and is also the one used in the Kermack-McKendrick epidemic
model. Note that φ in both expressions has a different meaning and a different unit. In
what follows, we define β (N) ≡ Φ(N)p.

Assuming further that the recovery rate scales linearly with the population size of
infectives, γI (Box 2), our epidemic SIR model is as follows:

dS
dt

= −β (N)
SI
N

dI
dt

= β (N)
SI
N

− γI

dR
dt

= γI

(2)

Here, N = S + I + R is the total host population size. Since dN/dt = 0, N does not
vary with time. The parameter γ is the (per capita) recovery rate; its reciprocal 1/γ
determines the mean duration of the infectious period (Box 2). Upon recovery from the
disease, individuals are here assumed to gain permanent immunity against reinfection.
As we effectively start with a fully susceptible host population to which an infective is
introduced, the initial conditions for model (2) are S(0) = N−ε , I(0) = ε , and R(0) = 0
for a small positive ε . With model (2) we shall now address some fundamental questions
concerning epidemics: ‘When does an epidemic start?’, ‘Once an epidemic has started,
how will it proceed?’, and ‘How many susceptibles escape an epidemic?’.

Box 1 How do we model disease transmission?

The behavior of epidemiological models is considerably affected by the way we model
transmission between infectious and susceptible hosts. The key issue here is how to
model the number of contacts with other individuals per unit time per individual. Infec-
tions spread via different kinds of contact (social, in school, within families, on public
transportation, etc.) each of which occurs at a different rate and with a different chance
per contact of disease being transmitted. The first (and only) term on the right-hand
side of the first equation of model (2) describes only the disease transmission rate re-
sulting from contacts between infectives and susceptibles. How is this term derived?
The disease transmission rate as a result of random contacts between infectives (I) and
susceptibles (S) can be viewed as a product of four elements:

1. contact rate Φ(N)
2. proportion of contacts that occur with susceptibles S/N
3. proportion of such contacts that actually result in infection p
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4. number of infectives I

Together, the disease transmission rate is thus Φ(N)pSI/N.

There has been much controversy over which of the two most common models of dis-
ease transmission, mass action incidence with Φ(N) = φN or standard incidence with
Φ(N) = φ , is more appropriate (if either) and under what circumstances. Mass action
incidence has been suggested as the more appropriate term for e.g. air-borne diseases.
The idea is that by doubling the number of people in a bus, a child with a runny nose
is likely to infect twice as many people. This does not seem to be the case of sexu-
ally transmitted diseases, however. An average woman or man typically has only a few
sexual partners (per year), irrespectively of the total population size, and standard inci-
dence here seems much more adequate. Also, for malaria and many other vector-borne
infections, vectors tend to make a fixed number of bites per day, independent of how
many hosts are available for their feeding; simple vector-host models are presented in
Sect. 4.3.

Mena-Lorca and Hethcote [27] tested the idea that for human diseases the contact rate
is only very weakly dependent on the absolute population size. Modeling the disease
transmission rate as β NvSI/N and using data for five human diseases in communities
with population sizes ranging from 1,000 to 400,000, they estimated v to lie between
0.03 and 0.07. This strongly suggests that standard incidence corresponding to v = 0 is
more appropriate to use for human diseases than mass action incidence corresponding
to v = 1. This result is consistent with the idea that people are infected through their
daily encounters and the patterns of daily encounters are largely independent of com-
munity size. Standard incidence is also a better formulation than mass action incidence
for animal populations in a herd, because disease transmission primarily occurs locally
from nearby animals.

A number of authors have proposed a saturation relationship between the contact rate
and host size – at low densities, contacts are directly proportional to host size, but a
maximum rate of contacts and actual density-independence is reached at high host den-
sities; see [13] and [14]. Figure 1 is just an example of such a situation, with the contact
rate Φ(N) = bN/(1 + cN).

In fact, the random-mixing assumption underlying the disease transmission models
specified above – that a proportion S/N of all contacts made by an infectious host
are with susceptibles – is merely a simplification. The proportion of all contacts taking
place between susceptible and infectious hosts may differ from this assumption for a
number of reasons, including a spatial patchiness of the infection or a physiological
heterogeneity in the susceptibility of hosts to contracting the disease. Actually, there is
a desperate need for more relevant experimental and observational data on transmission
dynamics because models of disease transmission generally outnumber sets of actual
data. A variety of other functions used to model disease transmission were summarized
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by McCallum et al. [26]. Thorough discussions surrounding the issue of choice of an
adequate model of transmission rate can also be found in [22], [4], and [16].
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Fig. 1. A saturation relationship between the contact rate and host size; Φ(N) = bN/(1 + cN),
with b = 1 and c = 3.

Box 2 What does a linear rate of recovery mean?

Box 2 follows [8]. Many mathematical models involve rates at which subjects leave a
model class. Often, these rates are modeled as linear functions of the abundance of the
class which remains behind. For example, model (2) assumes that infectives leave the
I class at rate γI. What does this mean precisely from the perspective of an infectious
individual? To address this question, consider a “cohort” of hosts who were all infected
at the same time and let I(τ) denote the number of these who are still infective τ time
units after having been infected. If these leave the infectious class at rate γ , then

dI/dτ = −γI

the solution of which is
I(τ) = I(0)e−γτ (3)

Thus, the fraction of infectives remaining infective τ time units after having been in-
fected is e−γτ . Changing now the perspective from cohort to individual infectives, (3)
means that the probability that an individual recovers before time τ after contracting the
disease is P(recovery time < τ) = 1− e−γτ . This implies that the length of the individ-
uals’ infectious period is exponentially distributed, with the mean∫ ∞

0
γτe−γτ dτ = 1/γ
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So, the linear recovery rate γI means that the mean time an individual is infectious
is 1/γ , and that the actual times of infection are exponentially distributed around this
mean. Although unrealistically simple, mathematically it is quite “elegant”. Alternative
models can be formulated, with more realistic distributions of the recovery time (e.g.
with a recovery time more or less the same for each infectious individual), but these
require a consideration of time delays or a subdivision of the time of infection into
smaller periods and thus make the model mathematically much more complex [20].
Actually, it turns out that many more realistic models exhibit qualitative behavior very
similar to the model with linear recovery rate [20].

When does an epidemic start? Let us begin with calculating the basic reproduction
number. We can calculate R0 as the rate at which new cases are produced by an infec-
tious individual when the entire population is susceptible, β (N)S(0)/N = β (N)×1 =
β (N), multiplied by the mean infectious period, 1/γ; hence

R0 = β (N)/γ (4)

Now, the infection will spread if initially dI/dt > 0 and die out if initially dI/dt < 0.
The second equation of model (5) implies that the infection will spread provided that

dI
dt

∣∣∣∣
t=0

= I(0)
(

β (N)
S(0)

N
− γ

)
> 0

which happens in a fully susceptible population if β (N)/γ > 1, and in a partially suscep-
tible population if (β (N)/γ)(S(0)/N) > 1. Analogously, it will die out if β (N)/γ < 1
or (β (N)/γ)(S(0)/N) < 1, respectively. This result is referred to as the threshold phe-
nomenon since initially the proportion of susceptibles in the population S(0)/N must
exceed the threshold γ/β (N) for an infection to invade. Putting R0 and the threshold
behavior together, an epidemic will start in a fully susceptible population as soon as
R0 > 1 and dies out if R0 < 1, as discussed in Sect. 1.5. This also implies that a disease
can invade a partially susceptible host population if and only if the fraction of suscepti-
bles is greater than 1/R0; hence, to eliminate the disease we need to reduce the fraction
of susceptibles below 1/R0.

Quite an important distinction exists in frequency-dependent transmission, with
β (N) = β , and density-dependent transmission, with β (N) = β N. For the former, we
have R0 = β/γ so that whether an epidemic starts or not depends just on the parasite
and host properties. On the other hand, for density-dependent transmission we have
R0 = β N/γ . Thus, it is also the host population size which drives the infection fate.
For any fixed values of β and γ , small enough populations cannot be invaded; the host
population size must exceed the threshold values N > NT ≡ γ/β for an epidemic to
start.

Once an epidemic has started, how will it proceed? To address this question, we
divide all three equations of model (2) by the (constant) total host population size N,
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yielding the rescaled model
ds
dt

= −β (N)si

di
dt

= β (N)si− γi

dr
dt

= γi

(5)

where s = S/N, i = I/N, and r = R/N are now proportions of hosts in the respective
classes. Since r = 1− s− i, knowing s and i allows us to calculate r and we can thus
“ignore” the last equation of model (5). The initial conditions now become s(0) = 1−
ε ≈ 1, i(0) = ε ≈ 0, and r(0) = 0 for a small ε > 0. Since the triangle X in the si phase
plane given by

X = {(s, i) |s ≥ 0, i ≥ 0,s+ i ≤ 1}
is positively invariant and thus unique solutions exist in X for all times t ≥ 0, model (5)
is mathematically and epidemiologically well-posed.

Obviously, as ds/dt < 0 the proportion of susceptibles will decrease over time,
and as dr/dt > 0 the proportion of recovered individuals will increase over time. In
addition, as the equation for r implies that i(t) → 0 as t → ∞ (dr/dt = 0 has the only
solution i = 0), then if R0 > 1 the proportion of infectives will initially increase and
eventually decrease to zero. So the disease spreads, reaches a maximum prevalence and
then recedes and vanishes, the behavior observed in countless real epidemics.

The epidemic loses its strength and eventually dies out because the replacement
number R = β (N)s(t)/γ decreases as s(t) decreases and eventually falls below 1 or
equivalently s(t) < 1/R0 (otherwise i(t) would never go to zero). At the moment R = 1
or equivalently s = 1/R0 = γ/β (N), the disease prevalence reaches its maximum. By
the chain rule, di/dt = (di/ds)(ds/dt), so that

di
ds

=
di
dt

/
ds
dt

= −1 +
γ

β (N)s

and hence
i = −s+

γ
β (N)

lns+ c (6)

where the constant of integration c is determined by the initial values s(0) and i(0):

c = i(0)+ s(0)− γ
β (N)

lns(0)

Inserting s = γ/β (N) into (6), the peak value imax of infectives is

imax = − γ
β (N)

+
γ

β (N)
ln

γ
β (N)

+ i(0)+ s(0)− γ
β (N)

lns(0)

For a fully susceptible host population, this further simplifies to

imax = 1− γ
β (N)

+
γ

β (N)
ln

γ
β (N)
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Figure 2A shows a typical solution of model (2), demonstrating the features just derived.
The speed at which an epidemic progresses depends on the characteristics of the

disease. In particular, higher values of R0 lead to a shorter and more severe epidemic
(Fig. 2C). Note that Fig. 2C plots disease incidence, not disease prevalence; for model
(2), disease incidence equals β (N)SI/N. An example of a plague epidemic in Bombay
lasting from December 17, 1905 to July 21, 1906 is given in Fig. 2D (after [20]).
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Fig. 2. Epidemic SIR model (2) with frequency-dependent disease transmission, β (N) = β . A.
Temporal disease dynamics. Parameter values correspond to the best fit of the model to the in-
fluenza epidemic data in an English school in 1978 (Keeling and Rohani 2008): β = 1.66 per
day and 1/γ = 2.2 days, and hence R0 = 3.65; N = 1000. B. The fraction of susceptibles that
escape the epidemic s∞ as a function of the basic reproduction number R0. C. Temporal progress
of disease incidence for different values of R0. D. Example of a plague epidemic in Bombay from
December 17, 1905 to July 21, 1906 (Keeling and Rohani 2008).

Finally, how many susceptibles escape an epidemic? In other words, what will be
the final fraction of susceptibles as t → ∞? By the chain rule, ds/dt = (ds/dr)(dr/dt),
so that

ds
dr

=
ds
dt

/
dr
dt

= −β (N)
γ

s = −R0s
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Upon integrating with respect to r and assuming r(0) = 0,

s(t) = s(0)exp(−r(t)R0)

This implies that s always remains positive as exp(−r(t)R0) is always positive. The
constraint r(t) ≤ 1 implies s(t) ≥ s(0)exp(−R0) so that there will always be some sus-
ceptibles in the population that escape an epidemic. As a result, the progress of the
epidemic will eventually break down because new infections cannot keep pace with re-
coveries, not because of a complete lack of susceptibles. Given that s + i + r = 1 and
that the epidemic ends with i = 0, we can write

s∞ = s(0)exp(−(1− s∞)R0) (7)

where s∞ is the proportion of host population that remains susceptible after the epidemic
ends; s(t)→ s∞ as t → ∞). For any R0, equation (7) has a unique solution which cannot,
however, be calculated analytically. By solving it numerically, we find that s∞ rapidly
approaches 0 as R0 increases (Fig. 2B). Therefore, for sufficiently large R0 essentially
everyone is likely to contract the disease. An application of equation (7) is given in Box
3.

Box 3 Using equation (7) to estimate R0 for an epidemic.

Consider an isolated village experiencing an outbreak of influenza in which 812 of its
1100 residents contract the infection. The question is to estimate R0 assuming that the
outbreak started with a single case contracted from outside the village, with all others
susceptible at the start of the outbreak. Solving equation (7) for R0, we have

R0 = − ln(s∞/s(0))
1− s∞

From what we know, r∞ = 812/1100 and hence s∞ = 1− r∞ = 288/1100, and s(0) = 1.
As a result, R0 ≈ 1.8.

In summary, the hallmark of a typical epidemic is that the number of infectious indi-
viduals first increases from an initial I(0) near zero (as long as R0 > 1), reaches a peak,
and finally decreases to zero. The number of susceptibles S monotonously decreases
with time, yet the final value S∞ remains positive; there are always host individuals
that escape the epidemic. Finally, the number of recovered individuals R monotonically
increases with time.

Endemic SIR Model Due to permanent immunity to reinfection, epidemics race through
the host population as waves of infection. However, new susceptible individuals are
born behind these waves. There are diseases which are endemic in many parts of the
world. To model an endemic disease we must envision a longer time scale and thus in-
clude births and deaths. The simplest way to incorporate births and deaths into a model
of infectious disease dynamics is to assume the same number of births and deaths per
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unit time so that the total population size still remains constant. This is, of course, pos-
sible only if there are no deaths due to the disease. The second SIR model we shall
formulate and analyze is just such an endemic model:

dS
dt

= μN −β (N)
SI
N

− μS

dI
dt

= β (N)
SI
N

− γI− μI

dR
dt

= γI − μR

(8)

This model assumes that all hosts produce offspring at the same rate (equal to the nat-
ural death rate) μ ; 1/μ can thus be viewed as the natural host life expectancy. Both
birth and (natural) death rates are assumed to be density-independent; there is no den-
sity dependence in either due to, for example, competition for resources. The model is
thus most appropriate for the study of human infections in developed countries. The
approach would be different if the host population exhibited its own dynamics as is
often the case with human populations in developing countries or wildlife populations;
Sect. 3 will deal with such situations.

Threshold behavior for this model can be deduced in the same way as for the epi-
demic one – the infection dies out in a partially susceptible population if S(0)/N <
(γ + μ)/β (N) and in a fully susceptible population if the basic reproduction number
R0 = β (N)/(γ + μ) < 1; the infection invades if the opposite inequalities hold. Note
that this R0 is lower than that for the epidemic SIR model (2). This is because the death
rate reduces the mean length of the period in which an individual is infectious. Rescal-
ing model (8) by dividing it by the (constant) total host population size N yields

ds
dt

= μ −β (N)si− μs

di
dt

= β (N)si− γi− μ i

dr
dt

= γi− μr

(9)

Since the inclusion of host demography may permit a disease to persist in the host
population in the long run, we seek system equilibria. Obviously, one such equilibrium
is (s∗, i∗,r∗) = (1,0,0). This is the disease-free equilibrium (DFE) as in this case the
parasite is not present and all hosts are susceptible. There is one more equilibrium, the
endemic equilibrium at which there is a positive proportion of infectives, i∗ > 0. The
second equation of model (8) implies

s∗ =
γ + μ
β (N)

=
1

R0

Inserting this formula to the first equation then gives

i∗ =
μ
γ

(
1− 1

R0

)
=

μ
β (N)

(R0 −1)
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This implies that the endemic equilibrium is feasible (i.e. i∗ > 0) if and only if R0 > 1,
which makes perfect sense as we already know that the disease can invade and poten-
tially persist in the host population if and only if R0 > 1. The equilibrium proportion of
recovered individuals can eventually be calculated as r∗ = 1− s∗ − i∗. At the endemic
equilibrium, the replacement number equals 1, since if it were greater than or less than
1, the proportion of infectives i would be increasing or decreasing, respectively. Local
stability analysis shows that if R0 > 1 (disease invades) the DFE is unstable and the
endemic equilibrium is locally asymptotically stable; conversely, if R0 < 1 (the disease
dies out), the DFE is locally asymptotically stable. So, if R0 > 1, supplementing the
pool of susceptibles by newborns ensures disease persistence in the long run.

Local stability analysis also shows that system trajectories might approach the en-
demic equilibrium in an oscillatory manner, that is, they fluctuate around the equilib-
rium and the amplitude of these fluctuations declines over time (Fig. 3). Intuitively, this
could be seen as follows. If R0 > 1, i(0) is small, and s(0) is large with s(0) > 1/R0,
then s decreases and i increases up to a peak and then decreases, just as it would for an
epidemic. However, after the proportion of infectives has decreased to a low level, the
slow processes of the deaths of recovered individuals and the births of new susceptibles
gradually increase the proportion of susceptibles until s is large enough that another
smaller epidemic occurs. This process of alternating rapid epidemics and slow regen-
eration of susceptibles continues as the trajectories approach the endemic equilibrium.
Mathematically, the damped fluctuations occur if eigenvalues of the system composed
of the first two equations of model (9) are complex numbers with negative real parts.
The eigenvalues are

λ1,2 = −μR0

2
±
√

μ2R2
0

4
− μ(γ + μ)(R0 −1)

and these become complex if and only if

μR2
0 < 4(γ + μ)(R0 −1)

This inequality is satisfied for parameter values used to plot Fig. 3A. For R0 = 1.05, for
example, the eigenvalues are complex provided that γ/μ > 4.5125. This certainly holds
if μ is very small, such as for human populations in developed countries where 1/μ can
be about 70 years, but at least in theory we might have cases where this is not true and
the eigenvalues are real, such as for μ = γ = 1.

Summary Upon successful invasion, an epidemic followed by disease extinction oc-
curred in the epidemic model (2) and an approach to endemic equilibrium was observed
in the endemic model (8). In both models, the total host population size was assumed to
be constant. We also emphasized an important distinction between frequency-dependent
transmission (or standard incidence, β (N) = β ) and density-dependent transmission (or
mass action incidence, β (N) = β N). Whereas for the former R0 depends only on model
parameters, for the latter it is also the host population size that matters: small host pop-
ulations cannot be invaded.
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Fig. 3. Temporal dynamics of endemic SIR model (8) with frequency-dependent disease trans-
mission, β (N) = β , when the infection approaches the endemic equilibrium. Model parame-
ters: 1/μ = 70 years, β = 520 per year, 1/γ = 7 days, N = 1000, S(0) = 0.1N − 2.5× 10−4,
I(0) = 2.5×10−4, R(0) = N −S(0)− I(0).

We also saw that for a disease to be endemic (i.e. to persist indefinitely) there must
be a supply of fresh susceptibles, through births in our case. Endemicity also occurs
once the susceptible class is steadily supplied by “new” individuals recovering only to
be immediately susceptible again (no immunity), or returning back to the susceptible
class thanks to merely temporary immunity (e.g. [20]). Generally, diseases transmitted
by viral agents, such as influenza, measles, rubella, and chicken pox, confer immunity
against reinfection, while diseases transmitted by bacteria, such as tuberculosis, menin-
gitis, and gonorrhea, confer no immunity against reinfection [8]. An SIRS model as an
extension of the endemic SIR model (8) can be as follows:

dS
dt

= μN −β (N)
SI
N

− μS + σR

dI
dt

= β (N)
SI
N

− γI− μI

dR
dt

= γI− μR−σR

(10)

where σ is the rate at which immunity is lost and recovered individuals move back to
the susceptible class; 1/σ can thus be viewed as the mean duration of immunity against
reinfection.

The simple SIR models presented here have obvious limitations. They assume that
the host population is uniform and homogeneously mixing (in reality, children usu-
ally have more adequate contacts per day than adults, different geographic and socio-
economic groups have different contact rates, etc.), that there is no latent period of the
disease, that there are no dynamics of the host population when the disease is absent,
etc. Still, despite these limitations, these models have contributed much to our under-
standing of the course of real epidemics and the way endemic equilibria can be attained;
they can also be useful in obtaining some parameter estimates and between-infections
comparisons [19].
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2.3 Vaccination
The ultimate goal of any vaccination program is to vaccinate enough people to achieve
a replacement number less than 1, so that an infection fades away and herd immunity
is achieved [19]. Herd immunity occurs for a disease if enough people have disease-
acquired or vaccination-acquired immunity, so that the introduction of one infective
into the population does not cause an invasion of the disease.

Successful vaccination moves individuals from the susceptible class straight into
the recovered class so that they can no longer catch or spread the infection. If it is
newborns who are vaccinated and p denotes the proportion of newborns vaccinated, we
might compose the following model as an extension of the endemic SIR model (8):

dS
dt

= μN(1− p)−β
SI
N

− μS

dI
dt

= β
SI
N

− γI− μI

dR
dt

= bN p + γI− μR

(11)

Analysis of this model shows that the disease cannot invade the host population if

p > pc = 1− (γ + μ)/β = 1−1/R0 (12)

This follows from two facts: first, in the absence of infection, the equilibrium value of
susceptibles is (setting the right-hand side of the first equation of (11) to zero, inserting
I = 0, and solving it for S) S = (1− p)N; second, R0 = β (S/N)/(γ +μ) when evaluated
at this equilibrium, so R0 = β (1− p)/(γ + μ). Finally, solving the inequality R0 < 1 for
p gives the resulting expression (12).

Table 4 lists some specific examples of pc. Smallpox is actually the only infectious
disease for which successful vaccination has been achieved worldwide and smallpox
has been eliminated (the last known case was in Somalia in 1977). For measles, on the
other hand, the herd immunity against measles has not been achieved and probably will
never be, as the minimum required proportion of newborns vaccinated is extremely high
(and the vaccine for measles is not always effective).

Table 4. Minimum proportion of newborns vaccinated for smallpox and measles, based on R0.
After Keeling and Rohani (2008).

Disease R0 pc [%]

Smallpox 3-5 66-80
Measles 16-18 93-95
Chickenpox 8-10 87.5-90

Even if p < pc, for which the disease persists, the equilibrium size of infectives

I∗ =
μN(1− p)

γ + μ
− μN

β
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shows that vaccination reduces the disease prevalence.
Alternatively, if it is susceptibles who are vaccinated, and θ is the rate at which they

are vaccinated (vaccination of I and R individuals is assumed to have no effect):

dS
dt

= μN −β
SI
N

− μS−θS

dI
dt

= β
SI
N

− γI− μI

dR
dt

= θS + γI− μR

(13)

In this case, the same method as above for the vaccination of newborns can be applied
to see that the disease cannot invade the host population if

θ > θc = μ(β/(γ + μ)−1) = μ(R0 −1) (14)

Again, there is a minimum rate at which susceptibles need be vaccinated for the disease
to be eliminated.

In reality, vaccination is only partly effective, decreasing the rate of infection and
also decreasing infectivity of a vaccinated person which has become infected. More
complex models are needed to come up with sound quantitative recommendations on
applicable vaccination strategies.

2.4 Epidemic SIR Model with Disease-Induced Mortality

This section follows [8]. We differentiate between members of the population who die
due to the disease and those that recover and become permanently immune. Disease-
induced deaths require adding an equation for the total host population size, as this
quantity is no longer a constant. Let us assume that infectious individuals leave the I
class at rate αI of which a proportion f recovers and the remaining proportion 1− f
dies due to the disease. We obtain the following model

dS
dt

= −Φ(N)p
SI
N

dI
dt

= Φ(N)p
SI
N

−αI

dR
dt

= f αI

dN
dt

= −(1− f )αI

(15)

Note that R is determined once S, I, and N are known, so we may “ignore” it. Once
f = 1 there are no disease-induced deaths and the model (15) reduces to the epidemic
SIR model (2).

Before we start with the analysis, we make some assumptions regarding the con-
tact rate Φ(N). We require that it be a positive (Φ(N) > 0), increasing (Φ ′(N) > 0),
and saturating function of N ((Φ(N)/N)′ ≤ 0 or equivalently Φ ′(N) ≤< Φ(N)/N); the
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function plotted in Fig. 1 is an example. Given this, we would like to demonstrate that
the model (15) has the same qualitative behavior as the model (2), namely that it demon-
strates a threshold behavior and that some hosts escape the disease after the epidemic
passes. According to [8], these two properties are the central features of all epidemic
models.

Assume that initially all hosts are susceptible and that the total host population size
is K. The basic reproduction number is then given by

R0 =
Φ(K)p

α

This is because a single infective introduced to a fully susceptible population makes
Φ(K) contacts in unit time of which all are with susceptibles, each contact results in a
new infection with probability p, and the mean length of the infectious period is 1/α .
Since I′(0) = α(R0 − 1)I(0), then if R0 > 1, an epidemic starts, and if R0 < 1, the
disease dies out.

From (15) we obtain
S′ + I′ = −αI

N′ = −(1− f )αI

Integration of these equations from 0 to t gives

S(t)+ I(t)−S(0)− I(0)= −α
∫ t

0 I(s)ds

N(t)−N(0) = −(1− f )α
∫ t

0 I(s)ds

When we combine these two equations, and note that N(0) = S(0)+I(0)= K, we obtain

K −N(t) = (1− f )[K −S(t)− I(t)]

If we let t → ∞, S(t) and N(t) decrease monotonically to limits S∞ and N∞, respectively,
and I(t) → 0. This implies

K −N∞ = (1− f )(K −S∞)

In this equation, K −N∞ is the change in population size due to disease deaths over the
course of the epidemic, while K − S∞ is the change in the size of susceptibles due to
infections over the course of the epidemic.

To show that S∞ > 0, let us assume that B = limN→0 Φ(N)/N is finite, thus ruling
out standard incidence. If we let t → ∞ in the first of the above integral equations, we
obtain

α
∫ ∞

0
I(s)ds = K −S∞

The first equation of (15) may be written as

−S′

S
=

Φ(N)
N

pI
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Since Φ(N)/N ≤ B, integration from 0 to ∞ gives

ln
S(0)
S∞

=
∫ ∞

0

Φ(N(t))
N(t)

pI(t)dt ≤ Bp
∫ ∞

0
I(t)dt =

Bp(K −S∞)
α

Since the right-hand side of this inequality is finite, the left-hand side is also finite and
this implies that S∞ > 0. In addition, if we use the same integration together with the
inequality Φ(N)/N ≥ Φ(K)/K, we obtain

ln
S(0)
S∞

=
∫ ∞

0

Φ(N(t))
N(t)

pI(t)dt ≥ Φ(K)
K

p
∫ ∞

0
I(t)dt = R0

(
1− S∞

K

)

If Φ(N)/N → ∞ as N → 0, such as for standard incidence, a different approach
must be used to analyze the limiting behavior. According to [8], it is possible to show
that S∞ = 0 only if f = 0, that is, only if all infectives die due to the disease. As we have
already emphasized above, the assumption that Φ(N)/N is unbounded as N → 0 is,
however, biologically unreasonable. In particular, standard incidence is not realistic for
small populations. A more realistic assumption would be that the number of contacts
per individual in unit time is linear for small population densities and saturates for large
population densities – a saturation transmission term discussed in Box 1.

2.5 Latent Period of the Disease

Many diseases have a latent period during which hosts are infected but not yet infec-
tious, which is comparable in length with the infectious period; see Table 3. This calls
for accounting for the latent period in epidemiological models, by introducing the ex-
posed class E of individuals. Extending the endemic SIR model (8), we may have the
following (endemic) SEIR model:

dS
dt

= μN −β (N)
SI
N

− μS

dE
dt

= β (N)
SI
N

−σE − μE

dI
dt

= σE − γI− μI

dR
dt

= γI − μR

(16)

In this model, σ is the rate at which individuals leave the exposed class and enter the
infectious one; 1/σ can thus be viewed as the mean latent period. In the limiting case
when σ → ∞, the latent period is negligible and the SEIR model (16) reduces to the
endemic SIR model (8).

The basic reproduction number R0 is here the product of the contact rate, the prob-
ability of surviving the latent period σ/(μ + σ), and the mean length of the infectious
period:

R0 =
β (N)
γ + μ

× σ
μ + σ
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Note that R0 is now slightly different than what we saw above for SIR models, due to the
death of some individuals when in the exposed class – an individual has to survive the
latent period in order to produce new infectives. However, we have already noted above
that for human populations in developed countries a typical value of μ can be about
1/70 year−1, that is, the mean life expectancy 1/μ is about 70 years. With this value,
σ/(μ +σ) ∼ 1 (the latent period is negligible relative to the mean life expectancy) and
we get close to the basic reproduction number corresponding to the endemic SIR model,
R0 = β (N)/(γ + μ).

As with the previous models, the model (16) (more precisely its rescaled version
with class densities divided by N) also possesses both the DFE (1,0,0,0) and the en-
demic equilibrium (s∗,e∗, i∗,r∗) with

s∗ =
(γ + μ)(μ + σ)

β (N)σ
=

1
R0

e∗ =
μ(γ + μ)
β (N)σ

(R0 −1)

i∗ =
μ

β (N)
(R0 −1)

and r∗ = 1−s∗−e∗− i∗, which is feasible provided that R0 > 1. Local stability analysis
shows that the endemic equilibrium is asymptotically stable (and the DFE unstable) for
R0 > 1, and the DFE is locally asymptotically stable if R0 < 1. Much like in the endemic
SIR model (8), here also perturbations die out in an oscillatory manner (Fig. 4A).

Panels B and C of Fig. 4 clearly show that the latent period is of importance only if
the mean life expectancy is comparable in size to the mean length of the latent period.
For human infections, we thus usually need not regard the exposed class E as an im-
portant aspect of epidemiological models. This is not the case, however, of infections
in which the latent period plays a considerable role (Fig. 4C and D). The addition of a
latent period is essentially akin to introducing a time delay – individuals need to pass
the exposed class before becoming infectious and transmitting the disease to suscepti-
bles. In epidemic SEIR models, we thus expect and indeed observe that longer latent
periods cause the epidemic to begin at a slower rate, reach a lower peak prevalence, but
last much longer (Fig. 4D). Still, the behavior of SEIR models is qualitatively similar to
those of the analogous SIR models.

For some diseases, rather than a latent period, there is an asymptomatic period E
during which individuals have some infectivity. If the infectivity during this period is
reduced by a factor ε relative to the infectious period, then the corresponding model
can be formulated as follows [8]:

dS
dt

= μN −β (N)
S(I + εE)

N
− μS

dE
dt

= β (N)
S(I + εE)

N
−σE − μE

dI
dt

= σE − γI− μI

dR
dt

= γI − μR

(17)

46



A

0 10 20 30 40 50 60
0

200

400

600

800

1000

Time (years)

Po
pu

la
tio

n 
si

ze
 o

r d
en

si
ty

susceptible
exposed
infectious
recovered

B

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3 x 10−3

Latent period 1/σ (days)

Eq
ui

lib
riu

m
 si

ze
 o

r d
en

si
ty

susceptible
exposed
infectious

C

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Latent period 1/σ (days)

Eq
ui

lib
riu

m
 si

ze
 o

r d
en

si
ty

susceptible
exposed
infectious

D

0 10 20 30 40
0

50

100

150

200

250

300

350

400

Time (days)

N
um

be
r o

f i
nf

ec
tio

us
 in

di
vi

du
al

s 1/σ = 0
1/σ = 1 days
1/σ = 2 days

Fig. 4. SEIR model (16) with frequency-dependent disease transmission. A. Temporal disease
dynamics when the disease approaches the endemic equilibrium. Parameter values: 1/μ = 70
years, β = 520 per year, 1/γ = 7 days, 1/σ = 5 days, N = 1000, S(0) = 0.1N − 2.5× 10−4,
E(0) = 2.5× 10−4, I(0) = 0, R(0) = N − S(0)− I(0). B. Equilibrium values for μ = 70 years,
β = 73 per day, and 1/γ = 7 days. C. Equilibrium values for μ = 7 days, β = 73 per day, and
1/γ = 7 days. D. Results of an epidemic SEIR model (just removing the μ-terms from model
(16)) for β = 1.66 per day, 1/γ = 2.2 days, N = 1000, and various values of σ .

2.6 Epidemiological Models on the Web

There are some publicly available tools through which one can play with the epidemio-
logical models discussed in this section (and many others):

1. Epidemic SIR model:
http://math.colgate.edu/∼wweckesser/solver/DiseaseSIR.shtml

2. Endemic SIR model:
http://math.colgate.edu/∼wweckesser/solver/DiseaseSIRwBD.shtml

3. SIR models: http://user.mendelu.cz/marik/dmb/sir.html
4. Populus – software tool for simulations in population biology:

http://cbs.umn.edu/populus/ then to Model → Multi-species dynamics → Host-
parasite models → Infectious microparasitic diseases

5. Source code accompanying the book “Modeling infectious diseases in humans and
animals” by Keeling and Rohani (2008):
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http://www.modelinginfectiousdiseases.org/ (available in C++, Fortran and Matlab;
some are also coded in web-based Java)

3 Modeling Wildlife Diseases

3.1 Why Study Wildlife Diseases?

There are (at least) three major reasons for studying wildlife diseases:

1. For wildlife species of conservation interest there are concerns about the impact of
diseases on population survival. Wildlife diseases thus pose a threat to biodiversity.
Two situations can be distinguished:
(a) Diseases can be contracted by spillover from domestic animals, as is e.g. the

case of canine distemper virus transmitted from domesticated dogs to African
wild dogs

(b) Diseases can be innate to wildlife, such as chytridiomycosis (an infection due
to the fungal pathogen Batrachochytrium dendrobatidis) in amphibians

2. There are increasing concerns about the possibility of either transmission from
wildlife to humans or to domestic animal species. In this case we often think of
wildlife as the reservoir species. According to the World Health Organization,
zoonoses (zoonosis, sing.) or zoonotic diseases are those diseases and infections
which are naturally transmitted between vertebrate animals and man.

3. Many natural phenomena are driven by parasites. These include sexual selection,
population dynamics, population genetics, diet selection (through manipulation of
hosts by parasites), and biogeography. Thus, we need to understand natural host-
parasite interactions in order to understand more general concepts of biology.

Zoonoses often occur because of anthropogenic changes to the environment. These
changes result in increased contact with wildlife species which allows a disease to jump
between species. Examples of wildlife diseases that are transmitted to humans include
hantavirus pulmonary syndrome (transmitted by wild rodents such as rats and mice),
bird or swine flu, and plague from prairie dogs and rats. Rabies cases in humans are
often due to bites by infected bats. Vector-transmitted diseases affecting wildlife as well
as humans include West Nile virus and Lyme disease. A fine exposition of emerging
infectious diseases of wildlife, including their implications for biodiversity and human
health, is provided by Daszak et al. [12].

The major differences between modeling human and wildlife diseases are that

1. Wildlife populations do not remain constant over time. Populations can be highly
variable due to environmental factors, landscape, or because of their internal dy-
namics.

2. Multiple species interactions are often involved. For example, a reservoir for in-
fection does not have to consist of one species, but can be made up of a number
of species which interact via the parasite and also otherwise through direct inter-
specific competition.
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3. In many cases, wildlife populations are believed to be controlled by parasites. Par-
asites can thus be added to the weaponry aimed at controlling pest populations. On
the other hand, parasites need to be limited in their ability to invade endangered
populations of hosts, to prevent biodiversity degradation.

4. Data can be more easily obtained from animal disease systems; it is often possi-
ble to experiment on wildlife populations or individual animals without the ethical
issues involved with human disease systems.

Human populations in developing countries or populations of rapidly multiplying
animals such as insects do not conform to the assumption of a constant population
size made in Sect. 2. In what follows, we will in turn assume that the host population
is subject to exponential growth, logistic growth, or constant rate immigration. The
epidemiological model we will study in all three cases is the SI model

dS
dt

= b(N)N −β (N)
SI
N

−d(N)S

dI
dt

= β (N)
SI
N

−d(N)I−αI
(18)

where β (N)SI/N represents either the mass action incidence term β SI or the standard
incidence term β SI/N, b(N) and d(N) represent possibly density-dependent per capita
birth rate and death rate, respectively, and α is an extra mortality rate induced by the
disease. The total host population size N = S + I thus evolves as

dN/dt = b(N)N −d(N)N −αI

3.2 Exponential Host Population Growth

We start by assuming that in the absence of disease, the host population grows expo-
nentially:

dN
dt

= bN −dN (19)

Hence, b(N) = b and d(N) = d are density-independent per capita birth and death rates,
respectively; the intrinsic growth rate of the host population is thus r = b− d. The
general solution of model (19) is N(t) = N(0)ert ; populations grow if r > 0 and decline
to extinction if r < 0 (Fig. 5).

The major question here is whether and how a disease may modify dynamics of
an exponentially growing host population. It seems plausible that infections can slow
down its exponential growth. Whether a disease can regulate the host population to a
steady state or even make it extinct is not at all clear. Mathematical models will help us
address this question.

Mass Action Incidence With mass action incidence, the model we will study is as
follows:

dS
dt

= bN −β SI−dS

dI
dt

= β SI−dI−αI
(20)
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Fig. 5. A couple of solutions of model (19) of exponential host population growth.

The total host population evolves as dN/dt = rN −αI, where r = b− d; we assume
b > d for the host population to grow exponentially in the absence of infection.

If a parasite will invade a host population of size N, the basic reproduction number
is

R0 =
β S

α + d

∣∣∣∣
S=N

=
β N

α + d
(21)

The condition R0 > 1 for the disease to successful invade a fully susceptible host pop-
ulation thus translates to the need to surpass a threshold host population size NT :

N > NT ≡ α + d
β

(22)

Provided that N > NT , the density of infectious individuals I will increase. If N < NT ,
however, I will decrease and S will thus grow at a rate close to r. After some time,
however, N will exceed NT and the condition (22) for successful disease invasion will
be satisfied: I will eventually increase. So, in an exponentially growing host population,
the disease driven by mass action incidence will always spread, the spread being lagged
if N < NT initially.

Now, let us seek for positive equilibria of model (20). As the equation for I can be
written as dI/dt = β I(N− I−NT ), the positive equilibria, if they exist, are solutions of
the equations

rN −αI = 0 and N − I−NT = 0

This gives

N∗ = NT
α

α − r
and I∗ = NT

r
α − r

⇒ S∗ = N∗ − I∗ = NT (23)

Obviously, I∗ > 0 provided that the disease-induced mortality rate α exceeds a threshold
value:

α > αT ≡ r (24)
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In addition, the unique positive equilibrium (23) of model (20) is locally asymptoti-
cally stable if it exists (check by analyzing its Jacobian). If α < αT then no positive
equilibrium exists and N undergoes an unbounded exponential increase, since

dN
dt

= rN −αI = (r−α)N + αS > (r−α)N ⇒ N(t) > N(0)e(r−α)t

To see even more, let us explore the dynamic equation for the proportion of infected
individuals i = I/N (recall that N now depends on time):

di
dt

=
d
dt

(
I
N

)
=

1
N

(I′ − iN′) = i[β N(1− i)− (α + d + r)+ αi]

Since N grows exponentially and 0 ≤ i ≤ 1, it must be i → 1 for the first term in the
square brackets to disappear in the long run. Given that dN/dt = N(r −αi), N grows
asymptotically exponentially at a reduced (with respect to no disease case) rate ρ =
r−α . Finally, knowing that N(t)→ cexp(ρt), i → 1 and I = iN, then I(t)→ cexp(ρt).
Inserting this last term to the equation I′ = β I(S−NT ) gives ρ = β (Ŝ−NT ), so that
asymptotically there will be a constant density of susceptibles,

Ŝ =
ρ +(α + d)

β
=

b
β

(25)

In summary, the disease will regulate the host population to stable equilibrium pro-
vided that α > αT and only slow its exponential growth relative to no disease case if
α < αT (Fig. 6A).
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Fig. 6. Exponential growth of the host population, embedded in an SI model. A. Mass action
incidence. B. Standard incidence.
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Standard Incidence With standard incidence, the SI model with exponential host pop-
ulation growth is:

dS
dt

= bN −β
SI
N

−dS

dI
dt

= β
SI
N

−dI−αI
(26)

The total host population evolves as dN/dt = rN −αI, where r = b−d; also here, we
assume b > d for the host population to grow exponentially in the absence of infection.

Whatever the initial population density N, the basic reproduction number is now

R0 =
β S/N
α + d

∣∣∣∣
S=N

=
β

α + d
(27)

The condition R0 > 1 for the disease to successfully invade a fully susceptible host
population thus translates to the condition β > α +d. If β < α +d, the disease will die
out, irrespectively of the initial host population density, and the host population goes on
to grow at rate r.

We go on by changing variables from densities of infectives to proportions of infec-
tives:

di
dt

=
d
dt

(
I
N

)
=

1
N

(I′ − iN′) = i[β (1− i)− (d + α + r)+ αi] (28)

This equation has as its proportional equilibria

i∗0 = 0 and i∗e = (β − (b + α))/(β −α) = 1−b/(β −α)

While the proportional disease-free equilibrium i∗0 always exists, the proportional en-
demic equilibrium i∗e is feasible (0 < i∗e < 1) only if R̂ ≡ β/(α +b) > 1. Note that b > d
implies R0 > R̂ > 1 so that existence of i∗e means successful disease invasion. When
it exists, i∗e is locally asymptotically stable and i∗0 is unstable; otherwise, i∗0 is locally
asymptotically stable.

Once i∗0 is stable, dN/dt = N(r −αi) → rN and the host population thus grows
exponentially at rate r. In addition, because dI/dt can be written as

dI/dt = I[β S/N− (d + α)] = I(d + α)(R0S/N −1)→ I(d + α)(R0 −1)

as t → ∞ (S/N = s = 1− i), it follows that if R0 > 1 the disease invades and thus I → ∞,
and if R0 < 1 the disease dies out and thus I → 0. The asymptotic rate of increase
(if R0 > 1) or decrease (if R0 < 1) is (d + α)(R0 − 1). If i∗e exists (and is stable), the
host population N will decline to extinction as soon as r −αi∗e < 0 or equivalently
R1 ≡ b/(d +αi∗e) < 1, and grow exponentially, albeit at a reduced rate r−αi∗e , if R1 > 1.

In summary, we observe the following four types of behavior of model (26) (see
also Fig. 6B):

1. If R̂ < 1, the proportional disease-free equilibrium i∗0 = 0 (that always exists) is
locally asymptotically stable and the host population grows exponentially at rate r;
in addition,
(a) when R0 > 1 disease invades and I → ∞
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(b) when R0 < 1 disease dies out and I → 0
2. If R̂ > 1 (which implies R0 > 1 so that disease always invades in this case), the pro-

portional disease-free equilibrium i∗0 = 0 is unstable and the proportional endemic
equilibrium i∗e > 0 exists and is locally asymptotically stable; in addition,
(a) when R1 > 1 the host population grows exponentially, at a reduced rate r−αi∗e ,

and I → ∞
(b) when R1 < 1 the host population dies out and I → 0

Note that the proportion of infectives i may tend to an endemic value i∗e , while the
density of infectives declines to zero (R̂ > 1, R1 < 1). Conversely, the proportion of
infectives i may tend to zero, while the density of infectives increases (R̂ < 1, R0 > 1).
There are therefore two distinct ways of considering a disease as being brought under
control in a host population – the stricter way requires that the density of infectives I
tends to 0 with time, while a weaker requirement is that the proportion of infectives i
tends to 0 with time.

3.3 Logistic Host Population Growth

Many populations are limited in growth by a finite amount of resources (such as food or
territories) so that their per capita growth rate declines as population density increases,
and logistic growth is the simplest formalization of this concept of negative density
dependence.

Logistic growth of a disease-free population due to negative density dependence is
often formalized via the Verhulst or logistic equation

dN
dt

= rN
(

1− N
K

)
(29)

where r > 0 is the intrinsic population growth rate (i.e. the actual population growth
rate when N is small) and K > 0 is the carrying capacity of the environment (i.e. the
density which the population eventually attains). This equation, though neat and simple,
has a substantial drawback: it does not distinguish between birth and death rates and
considers only the net growth rate of the population. However, such a distinction is
precisely what we would like to have for models of disease transmission, as the death
rate commonly enters equations for all epidemiological classes, while the birth rate
standardly enters only the equation for the susceptible class. Various attempts have
been made to reformulate equation (29) as a sum of a birth and a death part, such as

dN
dt

=
(

b−ar
N
K

)
N −

(
d +(1−a)r

N
K

)
N, 0 ≤ a ≤ 1 (30)

but these commonly suffer from the problem that the birth rate becomes negative once
N becomes sufficiently large (e.g. [17, 30]). Although the problem can be overcome by
setting the parameters so that the birth rate becomes negative only for relatively large
N > K which actually cannot be attained, we rather prefer to start from first principles
on reproduction and survival and revert the flow of thinking such that birth and death
rates are specified first and only then an equation for the population’s net growth rate
such as (29) is derived.
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In the simplest modeling framework, negative density dependence can affect the
birth rate, the death rate, or both – the birth rate decreases and the death rate increases
with increasing population density, but both must stay non-negative. Writing the equa-
tion for population growth as

dN
dt

= b(N)N −d(N)N (31)

we can formalize the per capita birth rate b(N) as, for example, b(N) = b−b1N if N ≤
b/b1 and b(N) = 0 otherwise, b(N) = bexp(−b1N) (Ricker formulation), or b(N) =
b/(1 + b1N) (Beverton-Holt formulation), and the per capita death rate d(N) as, for
example, d(N) = d + d1N or d(N) = dN/(d1 + N). It is just d(N) as a linear function
of N, d(N) = d + d1N, that is mathematically quite neat to analyze in many cases and
is therefore used by many authors to account for negative density dependence in epi-
demiological models (e.g. [25, 28]). In what follows, we too use this form of negative
density dependence in which d represents the intrinsic death rate (i.e. the actual death
rate when N is small) and d1 the strength of negative density-dependent effects. We
avoid using the word “negative” in the following, as we do not consider any other type
of density dependence here, but the reader should be aware that there are also positive
density-dependent effects (Allee effects, [11]). So, in the absence of disease the host
population is assumed to grow as

dN
dt

= bN − (d + d1N)N, b > d (32)

This model can also be written in the form (29), with r = b−d > 0 and K =(b−d)/d1 >
0. A couple of solutions of model (32) are plotted in Fig. 7.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Time

Po
pu

la
tio

n 
si

ze
 o

r d
en

si
ty

N(0) = 0.1
N(0) = 3
N(0) = 7

Fig. 7. A couple of solutions of model (32) of logistic host population growth; r = 1, K = 5.
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Mass Action Incidence Consider an SI model with logistic host population growth
and mass action incidence:

dS
dt

= bN −β SI− (d + d1N)S

dI
dt

= β SI− (d + d1N)I −αI
(33)

Again, the total host population density N = S + I evolves as dN/dt = bN − (d +
d1N)N −αI = rN(1 −N/K)−αI, where r = b− d and K = (b− d)/d1. The basic
reproduction number now equals

R0 =
β S

d + d1N + α

∣∣∣∣
S=N=K

=
β K

d + d1((b−d)/d1)+ α
=

β K
b + α

If we rescale the state variables as s = S/N and i = I/N, N will not disappear from
the resulting equations. Therefore, we analyze equations corresponding to rescaled I
(i = I/N) and to N. This leads to

di
dt

= i[β (1− i)N−α −b + αi]

dN
dt

= N[b− (d + d1N)−αi]
(34)

Four candidate equilibria of model (34) are (0,0), (0,K = (b− d)/d1), (1 + b/α,0),
and an endemic equilibrium (i∗e ,N∗

e ). Obviously, the third equilibrium is not feasible
as 1 + b/α > 1, that is, the equilibrium proportion of infectives would be greater than
one. While (0,0) and (0,K) always exist, the endemic equilibrium (i∗e ,N∗

e ) is feasible
provided that R0 > 1 (Box 4).

Box 4 Existence of the endemic equilibrium of model (34)

We use graphical analysis to prove that the endemic equilibrium (i∗e ,N∗
e ) of model (34)

is feasible provided that R0 > 1. The equilibrium is a solution of the system of two
algebraic equations:

β (1− i)N−α −b + αi = 0

b− (d + d1N)−αi = 0
(35)

Expressing N from the second equation as a function of i, N = K −αi/d1, we get a
decreasing linear function that equals K for i = 0 and crosses the i-axis at N = (b−
d)/α; recall that K = (b−d)/d1 (Fig. 8). Now, expressing i from the first equation as a
function of N,

i = 1− b
β N −α

we have a hyperbolic function that has N = α/β as its vertical asymptote and i = 1 as its
horizontal asymptote; moreover, it crosses the N-axis at N = (b+α)/β (Fig. 8). Hence,
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for these two functions to cross in the feasibility region for the endemic equilibrium (0 <
i < 1, 0 < N < K), we require that the hyperbolic function crosses the N-axis below K,
that is, we require that (b+α)/β < K. This inequality translates to β K/(b+α) > 1 and
because the left-hand side of this last inequality equals R0, we conclude that the endemic
equilibrium (i∗e ,N∗

e ) is feasible provided that R0 > 1. The shape of the two functions
also implies that if an endemic equilibrium exists it is unique. Graphical analysis in
two-dimensional systems is often a quite powerful tool in proving the existence (and
also number) of system equilibria.

Fig. 8. Graphical analysis of model (34).

Regarding local stability of the equilibria of model (34), its Jacobian is:

J =

[−2β Ni+ 2αi+ β N−α −b β (1− i)i

−αN −2d1N + b−d−αi

]
(36)

This can be used to show that for b > d:

1. The extinction equilibrium (0,0) is always unstable.
2. The DFE (0,K) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
3. The endemic equilibrium (i∗e ,N∗

e ) is locally asymptotically stable if it exists (i.e. if
R0 > 1); see Box 5.
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Box 5 Local stability of the endemic equilibrium of model (34)

Using equations (35) that the endemic equilibrium satisfies allows us to simplify the
Jacobian (asterisks and subscripts e dropped) (36) to

J =

[−β Ni+ αi β (1− i)i

−αN −d1N

]
(37)

Local asymptotic stability requires the trace of J to be negative and the determinant of
J to be positive. Since

TrJ = −i(β N −α)−d1N

detJ = d1Ni(β N −α)+ αNβ (1− i)i
(38)

a sufficient condition for local asymptotic stability of the endemic equilibrium is β N >
α . To prove that this inequality indeed holds, note that at the endemic equilibrium the
replacement number R of the infection must equal 1 (i.e. the current infectives produce
the same amount of future infectives). Since

R =
β S

d + α
=

β Ns
d + α

=
β N(1− i)

d + α
= 1

this implies
β N −α = d + iβ N > 0

and hence
β N > α

This completes the proof.

Biologically, the model outcomes can be summarized as follows (Fig. 9A): the dis-
ease either does not invade and the host population attains its environmental carrying
capacity, or it invades and attains an endemic equilibrium. With mass action incidence,
the infection cannot cause the host population to go extinct.

Standard Incidence With standard incidence, an equivalent SI model is:

dS
dt

= bN −β
SI
N

− (d + d1N)S

dI
dt

= β
SI
N

− (d + d1N)I −αI
(39)

Note that we assume equal density dependence for susceptibles and infectives. The total
host population density N = S + I evolves as

dN/dt = bN − (d + d1N)N −αI = rN(1−N/K)−αI
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where r = b−d and K = (b−d)/d1. As we require b > d, in the absence of disease the
population attains the environmental carrying capacity K. The disease-free equilibrium
(DFE) of model (39) is thus (K,0).

As always, we start with calculating the basic reproduction number R0:

R0 =
β S/N

d + d1N + α

∣∣∣∣
S=N=K

=
β

b + α
(40)

The condition R0 > 1 for the disease to invade a fully susceptible population at the DFE
thus translates to the condition β > α + b. If R0 < 1 or equivalently β < α + b, the
disease will die out.

We go on by rescaling state variables of model (39) as s = S/N and i = I/N (note
that N is a function of time). This leads to (note that N disappeared from the resulting
equations, contrary to mass action incidence):

ds
dt

= b(1− s)+ (α −β )si

di
dt

= β si− i(α + b)+ αi2
(41)

Since s = 1− i, we can write the equation for i as

di
dt

= i[β (1− i)− (α + b)+ αi]

Obviously, i∗0 = 0 solves the equation di/dt = 0 which implies s∗0 = 1; (1,0) is thus the
proportional disease-free equilibrium. Setting the term in square brackets to zero and
solving it for i, we get

i∗e =
β − (α + b)

β −α
= 1− b

β −α
as a proportional endemic equilibrium (0 < i∗e < 1) if β > α +b or equivalently R0 > 1;
s∗e = b/(β −α). Local stability analysis shows that if R0 < 1 then (s∗0, i

∗
0) is locally

asymptotically stable; if R0 > 1, on the other hand, (s∗0, i∗0) is unstable and (s∗e , i∗e) is
locally asymptotically stable.

In addition, since
dN/dt = N[(b−d−d1N)−αi]

we have that N → N∗ as t → ∞ where

1. N∗ = K if R0 < 1
2. N∗ = (b−d−αi∗e)/d1 < K if R0 > 1 and b−d > αi∗e
3. N∗ = 0 if R0 > 1 and b−d < αi∗e

Model equilibria in the original state variables can be calculated as S∗ = s∗N∗ and
I∗ = i∗N∗.

Biologically, the model outcomes can be summarized as follows (Fig. 9B): the dis-
ease either does not invade and the host population attains its environmental carrying
capacity, or it invades and then proportions of susceptibles and infectives attain an en-
demic equilibrium. In the latter case, the total host population may either attain an
endemic equilibrium if the effect of the disease is not too strong, or go extinct if it is.
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Fig. 9. Logistic growth of the host population, embedded in an SI model. A. Mass action inci-
dence. B. Standard incidence.

3.4 Host Population Growth with Constant Rate Immigration

A number of published epidemiological models consider immigration at a constant rate
instead of a density-dependent birth term [2, 27]e.g. . With immigration rate Λ > 0, the
host population in the absence of disease is thus assumed to evolve as

dN
dt

= Λ −dN (42)

This implies that the host population never goes extinct in the absence of disease (popu-
lation extinction is not even a model equilibrium) and attains the environmental carrying
capacity K = Λ/d. A couple of solutions of model (42) are plotted in Fig. 10.
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Fig. 10. A couple of solutions of model (42) of host population growth with constant immigration;
d = 1, Λ = 5.
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Generic Incidence Let us now work with a generic incidence term β (N)SI/N; the SI
model is then

dS
dt

= Λ −β (N)
SI
N

−dS

dI
dt

= β (N)
SI
N

−dI−αI
(43)

The total host population size or density N = S + I evolves as

dN/dt = Λ −dN −αI

First, I = 0 solves the equation dI/dt = 0 which implies S = Λ/d from the equation
dS/dt = 0: (Λ/d,0) is thus the DFE. For the disease to invade the host population, we
must have

1
I

dI
dt

= β (N)S/N −d−α > 0

when evaluated at the DFE which implies β (Λ/d) > d + α . As the basic reproduction
number is

R0 =
β (N)S/N

d + α

∣∣∣∣
S=N=K=Λ/d

=
β (Λ/d)
d + α

the disease invades the host population if and only if R0 > 1.
Evaluating the Jacobian of model (43) at the DFE, we have

J =

[−d −β (Λ/d)

0 β (Λ/d)− (d + α)

]
(44)

The DFE (Λ/d,0) is thus locally asymptotically stable provided that β (Λ/d) < d +α ,
that is, if R0 < 1, and unstable if the opposite inequality holds.

Solving model (43) for an endemic equilibrium, we eventually get that (asterisks
dropped)

β (N)S = (d + α)N (from the equation for I)

Λ + αS = (d + α)N (from the equation for N)

This can be solved for S and N if a specific form of β (N) is given. Once solved, the
equilibrium density of infectives can be calculated as

I =
Λ −dS
(d + α)

(from the equation for S)

In particular, standard incidence β (N) = β implies a unique solution

S∗ =
Λ

β −α
and I∗ = Λ

β − (d + α)
(d + α)(β −α)

(45)

whereas mass action incidence β (N) = β N implies a unique solution

S∗ =
d + α

β
and I∗ =

Λβ −d(d + α)
β (d + α)

(46)
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In both cases, S∗ > 0 and I∗ > 0 if and only if R0 > 1. Also, in both cases, this unique
endemic equilibrium of model (43) is locally asymptotically stable if it exists.

Biologically, regardless of the type of incidence (mass action or standard) the dis-
ease either does not invade and the host population attains its environmental carrying
capacity, or it invades and attains an endemic equilibrium (Fig. 11). The disease can
never bring the host population to extinction (population extinction is not even a model
equilibrium).
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Fig. 11. Host population growth with constant rate immigration, embedded in an SI model. A.
Mass action incidence. B. Standard incidence.

3.5 Summary

The above three sections have demonstrated several important points. First, we now
know that parasites can regulate the (dynamic) host populations. This regulation does
not mean a merely quantitative change, such as a decrease in the exponential growth rate
or a decrease in the steady state. It may also result in a qualitative change: exponentially
growing populations can be stabilized or even made extinct, just like populations that
grow logistically in the absence of infection.

Second, disease-induced extinction of host populations requires that the disease
transmission not decline to zero as population density declines. If that is so, such as
in the case of mass action transmission, low-density populations are virtually free of
parasites and can thus recover. On the other hand, populations subject to standard inci-
dence do not suffer from this limitation and can be made extinct if the infection is strong
enough as regards disease-induced mortality – transmission efficiency simply does not
fade out with declining population density.

Third, the exception from this are models with a constant immigration rate. Since
this type of immigration causes the susceptibles to arrive at a steady rate, such pop-
ulations cannot be made extinct by any disease regardless of whether mass action or
standard incidence drives the parasite transmission.
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We have presented and analyzed here only the simplest epidemiological models (the
SI models), in part because this is an adequate description for many wildlife diseases
and in part because they can be treated analytically to greater detail relative to more
complex models and thus the basic principles that drive disease dynamics can be more
easily revealed. Nevertheless, researchers have extended this analysis to epidemiolog-
ical models with a more complex structure, and we absolutely encourage interested
readers to consult those for more insight. Nevertheless, it turns out that the basic types
of dynamics revealed for the simplest SI model are conserved in those more complex
models, too (see Table 5 and references therein).

Table 5. Examples of studies that analyzed more complex epidemiological models with internal
host growth. The results of these studies were qualitatively similar to those of the SI models
analyzed in this material.

Host growth Model type Incidence Reference

Exponential SIRS mass action Anderson and May [2]
SIRS standard Busenberg and van den Driessche [10]
SIRS saturation Mena-Lorca and Hethcote [27]
many mass action Anderson and May [2]
SEIR standard Li et al. [24]

Logistic SI(S) standard Lockhart et al. [25]
SEIa mass action Gao et al. [18]
SEIa standard Gao et al. [18]
SIS and SIRSb standard Gao and Hethcote [17]

Constant rate SIRS mass action Mena-Lorca and Hethcote [27]
immigration SIRS standard Mena-Lorca and Hethcote [27]

SIRS mass action Anderson and May [2]

Note: aThis model also optionally includes reduced reproduction due to disease.
bThese models also optionally include vertical disease transmission.

An interesting study was provided by Ryder et al. [32]. They considered the sit-
uation in which transmission occurred through two different types of contact (e.g.
sexual vs. non-sexual/social contacts), one of which was density-dependent, the other
frequency-dependent, and asked how do deviations from solely density-dependent or
frequency-dependent transmission affected dynamics. The model is as follows:

dS
dt

= (b−b1N)N −β (β1 + β2N)
SI
N

−dS

dI
dt

= β (β1 + β2N)
SI
N

−dI−αI
(47)

Ryder et al. [32] showed that when the major type of transmission was density-dependent
transmission (β1 ≈ 0), allowing for even small amounts of transmission to occur through
frequency-dependent contacts lowered the threshold for disease invasion and led to
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the possibility of disease-induced extinction. On the contrary, assuming frequency-
dependent transmission to be dominant (β2 ≈ 0) and adding a small amount of density-
dependent one did not affect the propensity to disease-induced extinction, but still in-
creased the chance of disease invasion.

This section, together with the previous one, make clear the point that we need to
make a number of decisions when considering a host-parasite interaction, even in the
framework of the simplest host-parasite models. We must consider the type of host
population demography (constant population density [epidemic or endemic disease],
exponential growth, logistic growth, or constant rate immigration), whether to use no,
transient or permanent immunity to infection, and which form to choose for the (hori-
zontal) transmission term (frequency-dependent, density-dependent or other). Also, we
need to decide if there is no or some disease-induced mortality, no or some vertical
transmission, and no or some sort of depression of reproduction due to infection. The
essential message here is that qualitative properties at the level of individual hosts and
parasites create qualitative differences at the whole-population level, and the connection
between these is mediated through adequate epidemiological models.

We have not discussed at all models of infectious diseases that reduce host fecundity
and/or are transmitted vertically. Just to get a feeling of how such models could look
like, we give an example here:

dS
dt

= b(S +(1− p)(1−σ)I)−β (N)
SI
N
−dS

dI
dt

= bp(1−σ)I + β (N)
SI
N

−dI−αI
(48)

where σ denotes the proportional decrease in fecundity of infectives, and p is the pro-
portion of newborns produced by infectives to which the disease is transmitted verti-
cally.

4 Some Applications

In this section, we present four applications of models analyzed in this material. Each of
these applications has an added value not discussed above, so it extends the scope of this
material. Whereas the dynamic model of HIV/AIDS considers treatment of HIV+ indi-
viduals as another disease control strategy, modeling the hantavirus infection requires
an explicit account of both host sexes. We go on with modeling vector-borne infections
for which both the host and the vector populations need to be subdivided according to
the disease status. Finally, an infection is shown to explain the successful invasion of
the alien gray squirrels over the native red ones across Europe.

4.1 Dynamics of HIV/AIDS

This example comes from [31] and originally from [6]. AIDS (acquired immunodefi-
ciency syndrome), results from the deterioration of the immune system and is the final
stage of infection by HIV (human immunodeficiency virus). HIV is transmitted through
the exchange of bodily fluids, predominantly through unprotected sexual intercourse,
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but also through sharing of unsterilized needles or transfusion with infected blood sup-
plies. AIDS can now be classified as a pandemic. According to the Joint United Nations
Programme on HIV/AIDS (UNAIDS) and World Health Organization (WHO), 33.2
million people worldwide were estimated to be infected by HIV in 2007. In addition,
2.1 million people, including 330,000 children, were estimated to have been killed by
AIDS.

Blower et al. [6] developed and analyzed a model to predict an advance of HIV
infection among gay males in San Francisco. There is a general concern that effective
antiretroviral therapies (ART) might cause people to be less cautious when engaging in
behavior posing a risk for HIV transmission. Blower et al. [6] asked what this might
mean for the further progression of the disease relative to when no ART was available.
We present here a simplified version of their model due to [31] which ignored the evolu-
tion of HIV resistance. The major assumption of the model was that the mean number of
sexual partners with whom an HIV– individual has unprotected sex per year increased
from c before ART was available to c(1 + i), for a constant i > 0.

The model assumes three classes of gay males, uninfected individuals X(t), HIV+
individuals taking ART YT (t), and untreated HIV+ individuals YU(t). The rate of change
of the number of individuals in each class is as follows:

dX
dt

= π − c(1 + i)λ X − μX

dYU
dt

= c(1 + i)λ X + gYT −σYU − μYU −νUYU

dYT
dt

= −gYT + σYU − μYT −νTYT

(49)

where π is the rate at which HIV– men enter the gay community in San Francisco, μ is
the rate at which gay man leave the community (by moving away, becoming sexually
inactive, or dying for reasons other than HIV/AIDS), σ is the rate at which untreated
HIV+ men enter treatment, g is the rate at which treated HIV+ men abandon treatment,
νU is the death rate of untreated HIV+ men from AIDS, and νT is the death rate of
treated HIV+ men from AIDS. The force of infection λ , i.e. the per capita rate at which
susceptibles catch the disease, is the probability that a sexual partner is HIV+ times the
probability of acquiring HIV from this partner during sex, summed over the treated and
untreated classes:

λ = βU
YU
N

+ βT
YT
N

(50)

where N = X +YU +YT is the total number of gay males in the community; the untreated
partners are assumed to have a higher probability of HIV transmission than the treated
ones, βU > βT .

Following [6], Otto and Day [31] showed that “43% of the AIDS deaths that would
have occurred within the gay population of San Francisco within the next ten years will
be avoided by the use of ART if risky behavior does not increase [i = 0], but only 24% of
deaths will be averted if risky behavior doubles [i = 1].” From another perspective, there
will be a much higher probability of contracting HIV through upon sexual intercourse
when risky behavior doubles compared to when it does not increase (Fig. 12).
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Fig. 12. Dynamics of uninfected (solid), treated HIV+ (dash-dot), and untreated HIV+ (dashed)
individuals when the risky behavior does not change (thin) and when it doubles (thick). Parame-
ters from Otto and Day (2007).

4.2 Hantavirus Infection in Rodents

This example comes from [1]. Hantaviruses are primarily a source of infection in ro-
dents that might nonetheless be occasionally transmitted to humans. Human infection
occurs primarily through the inhalation of aerosolized saliva and/or excreta of infected
rodents, or after individuals have been bitten by infected rodents. Humans infected by
hantaviruses suffer from a hemorrhagic fever with renal syndrome – HFRS (in Europe
and Asia) or a hantavirus pulmonary syndrome – HPS (in North and South America).
The mortality rate for HPS in the United States is 37%.

None of the models studied above discerned between male and female hosts, assum-
ing that an infection affects both sexes equally. With hantavirus infection this is differ-
ent, as two aspects of the disease call for an explicit consideration of host sex structure:
(i) as males are more aggressive than females, contacts between two males generally
result in greater transmission of the disease than contacts between two females or a
male and a female, so that males have a higher disease prevalence than females, and (ii)
the infectious period is longer for males than for females. In addition, because the life
expectancy of rodents is relatively short, the latent period of the disease needs to be ac-
counted for. The population is thus subdivided according to disease status: susceptible
(S), exposed (E), infective (I), and recovered (R), and then into males (subscript m) and
females (subscript f ). For male rodents, the SEIR model is as follows:

dSm
dt

=
B(Nm,Nf )

2
−β f SmIf + βmSmIm −d(N)Sm

dEm
dt

= β f SmIf + βmSmIm −σEm −d(N)Em

dIm
dt

= σEm − γmIm −d(N)Im

dRm
dt

= γmIm −d(N)Rm

(51)
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and for female rodents,

dS f

dt
=

B(Nm,Nf )
2

−β f S f I f + βm f S f Im −d(N)S f

dE f

dt
= β f S f I f + βm f S f Im −σE f −d(N)E f

dIf

dt
= σE f − γ f I f −d(N)I f

dR f
dt

= γ f I f −d(N)R f

(52)

where total density of males is Nm = Sm + Em + Im + Rm, total density of females is
Nf = S f + E f + I f + R f , and total population density is N = Nm + Nf . The function
B(Nm,Nf ) is the birth function, and one assumes a 1:1 sex ratio of newborns. One of
the most commonly used birth functions in sex-structured models is

B(Nm,Nf ) = b
NmNf

(Nm + Nf )/2

where b is the average litter size and the fraction NmNf /[(Nm +Nf )/2] is the pair forma-
tion rate. In the model, β f scales the disease transmission between an infective female
and a susceptible female or a susceptible male, βm f scales the disease transmission
between an infective male and a susceptible female, and βm scales the disease trans-
mission between an infective male and a susceptible male. The above stated differences
between male and female epidemiology translate to the following conditions:

βm ≥ βm f ≥ β f and γ f > γm

The density-dependent death rate d(N) = d + d1N, with 0 < d < b/2 and d1 > 0 is the
same for males and females; we thus assume a logistic growth of the rodent population
in the absence of infection (see Sect. 3.3).

There is a globally stable positive equilibrium for the total population density in the
absence of infection, N = K ≡ (b/2− d)/d1. At this equilibrium, densities of males
and females equal, Nm = Nf = K/2. Therefore, because there is no disease-induced
mortality in the model, every equilibrium of the model (51) and (52) must satisfy

Sm + Em + Im + Rm = S f + E f + I f + R f = K/2

One particular equilibrium with this property is the disease-free equilibrium (DFE),
where Sm = K/2 = S f and Em = Im = Rm = E f = I f = R f = 0. The stability of the DFE
depends on the magnitude of the basic reproduction number. Using the method of [36],
sketched in Sect. 5, one can show that

R0 =
σK/4

b/2 + σ

[
βm

b/2 + γm
+

β f
b/2 + γ f

+

√
[βm(b/2 + γ f )+ β f (b/2 + γm)]2 −4β f (βm −βm f )(b/2 + γ f )(b/2 + γm)

(b/2 + γm)(b/2 + γ f )

] (53)
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Importantly, R0 is proportional to the environmental carrying capacity of the rodents
K. As K increases, R0 also increases and so does the chance of a disease invasion.
This relationship between R0 and K is a consequence of the assumption of mass ac-
tion incidence, a reasonable assumption for rodent populations. This result agrees well
with what happened in New Mexico in 1993. There, the outbreak of Sin Nombre virus
(a hantavirus strain) was associated with increased densities of deer mice Peromyscus
maniculatus, its primary host.

4.3 Vector-Host Models

Vector-host modeling is a fruitful area of research, mainly because many important
diseases of humans are transmitted by vectors and especially mosquitoes, but also flies
and ticks. Examples include malaria (where the parasite is transmitted from human to
human via mosquitoes), bubonic plague (where the parasite is transmitted from rodent
to rodent via fleas and occasionally to humans), and Lyme disease (where the parasite is
transmitted from deer to deer via ticks and occasionally to humans). Actually, malaria
is currently the most frequently modeled vector-borne disease.

Vector-host modeling introduces a new problem, the need to include the population
dynamics of the vector. As an illustration, assume an SIS model for the host and an
SI model for the vector (vectors rarely recover from the disease but are also rarely
affected by it). The four model compartments then consist of susceptible hosts (SH),
infectious hosts (IH), susceptible vectors (SV ) and infectious vectors (IV ). Hosts are
infected by contacts with infectious vectors and vectors are in turn infected by contacts
with infectious hosts. Let the disease transmission correspond to standard incidence
(vectors are assumed to bite a fixed number of hosts per unit time). The vector-host
epidemiological model is then as follows:

dSH

dt
= μNH −βV IV

SH

NH
− μSH + γIH

dIH

dt
= βV IV

SH

NH
− μIH − γIH

dSV

dt
= cNV −βHSV

IH

NH
− cSV

dIV
dt

= βHSV
IH

NH
− cIV

(54)

where NH = SH + IH and NV = SV + IV are total population densities of hosts and vec-
tors, respectively; note that both populations are assumed constant here since births and
natural deaths are balanced and there is no disease-induced mortality. Once a is the
per capita bite rate of vectors (the number of bites a vector makes per unit time) and
pHV (pVH ) is the probability that an infectious vector biting a susceptible host transmits
the infection (the probability that an infection is transmitted upon a susceptible vector
biting an infectious host), we can write βV = apHV and βH = (1−(1− pVH)a)≈ apVH .
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Following the procedure developed by [36], shortly presented as Sect. 5, the basic
reproduction number R0 for model (54) is

R0 =

√
βH

μ + γ
βV

c
NV

NH
(55)

The biological meaning of R0 can be readily given. Near the DFE equal to (NH ,0,NV ,0),
each infectious vector produces βV (SH/NH)/c|SH=NH new infectious hosts over its mean
infectious period 1/c, and each infectious host produces βH(SV /NH)/(μ +γ)SV =NV new
infectious vectors over its mean infectious period 1/(μ +γ). The product gives the total
basic reproduction number from vector to vector or from host to host. The square root
then represents the geometric mean, i.e. the basic reproduction number for an average
individual of both species combined. We get R0 < 1 if and only if

NH
NV

>
βH

μ + γ
βV
c

(56)

Therefore, if the ratio of the total host population to the total vector population becomes
large, the infection dies out. Intuitively, this is because when there are many hosts (such
as humans) relative to vectors (such as mosquitoes), the chance of someone being bitten
twice in a quick succession – once to catch the infection and once to pass it on before
recovery – is very small. Therefore, for a vector-borne infection to successfully invade
the host population, the ratio of vectors to hosts has to be sufficiently large that double
bites are common.

Rescaling SH as sH = SH/NH , IH as iH = IH/NH , SV as sV = SV /NV , IV as iV =
IV /NV , and setting β̂V = βV (NV /NH) allows us to simplify the model as

dsH
dt

= μ − β̂V iV sH − μsH + γiH

diH
dt

= β̂V iV sH − μ iH − γiH

dsV
dt

= c−βHsV iH − csV

diV
dt

= βHsV iH − ciV

(57)

Realizing further that sH = 1− iH and sV = 1− iV and inserting these expressions
to the second and fourth equations of the model (57), respectively, we end up with just
two equations

diH
dt

= β̂V iV (1− iH)− μ iH − γiH

diV
dt

= βH(1− iV)iH − ciV
(58)

The last model (58) has two equilibrium points. One is (0,0) which corresponds to the
DFE (sH = sV = 1); that is, only the susceptible individuals of both species are present;
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(NH ,0,NV ,0) is then the DFE of the original unscaled system. The other is the unique
endemic equilibrium

(i∗H , i∗V ) =

(
βH β̂V − c(b + γ)

βH(β̂V + b + γ)
,

βH β̂V − c(b + γ)

β̂V (βH + c)

)
(59)

The endemic equilibrium of the original unscaled system is then S∗H = (1 − i∗H)NH ,
I∗H = i∗HNH , S∗V = (1− i∗V )NV , I∗V = i∗V NV , and replacing β̂V back by βV (NV /NH). Trivial
calculations show that i∗H and i∗V are always less than 1, and that I∗H = i∗HNH and I∗V =
i∗V NV are positive as soon as R0 > 1. Local stability analysis of the equilibria would then
show that

1. if R0 < 1 then there is only the DFE (NH ,0,NV ,0) which is locally asymptotically
stable,

2. if R0 > 1 then the DFE is unstable and there is a unique endemic equilibrium
(S∗H , I∗H ,S∗V , I∗V ) which is locally asymptotically stable.

A number of variations of model (54) exist in the literature. Here we shall briefly
present a model of the West Nile virus (WNV) infection developed by [37]. The primary
hosts of WNV are birds, especially crows, and the virus is transmitted via mosquitoes of
the genus Culex. Mammals (e.g. horses and humans) are secondary hosts, generally con-
sidered unimportant to disease persistence in the wild. WNV is widespread in Africa,
the Middle East and western Asia, with occasional European outbreaks introduced by
migrating birds. In North America, the first recorded epidemic was initially detected in
the New York state in 1999 and spread rapidly across the continent, with many bird,
horse and human deaths left behind. The simplest possible biologically relevant model
for WNV transmission contains four compartments for mosquitoes (larvae, susceptible,
exposed and infectious adults) and three compartments for birds (susceptible, infectious
and recovered birds) and is as follows (see also Fig. 13):

dSB/dt = −abIMSB/NB

dIB/dt = abIMSB/NB − μV IB −gIB

dRB/dt = gIB

dLM/dt = βM(SM + EM + IM)−mLM − μLLM

dSM/dt = −acSMIB/NB + mLM − μASM

dEM/dt = acSMIB/NB − kEM − μAEM

dIM/dt = kEM − μAIM

(60)

Parameter values for this model have been extracted primarily for the American
crow, Corvus brachyrhynchos Brehm, the bird that suffered one of the highest mortali-
ties in the North American WNV epidemic, and for the mosquito Culex pipiens sspp.,
a major North American WNV vector, can be found in [37]. The basic reproduction
number equals

R0 =

√
ab
μA

SM(0)
NB(0)

ac
μV + g

k
k + μA

≈ 0.465

√
SM(0)
NB(0)
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using those mean parameter values. As usual, when R0 < 1 the DFE is locally stable;
when R0 > 1 it is locally unstable, and the disease is able to invade the vector-host
system. The virus will therefore invade if SM(0)/NB(0) > 4.625. For New York in 2000,
a 40− 70% reduction of the initial mosquito population, i.e. reducing SM(0)/NB(0)
from 7.5− 15 to less than about 4.6, would have prevented the WNV outbreak. Bird
control, however, would have had the opposite effect.

Fig. 13. Progression diagram for the West Nile virus model (60). Adapted from Wonham et al.
(2004).

4.4 Multi-Host Models: System with Parapoxvirus and the Red versus Gray
Squirrel

The gray squirrel was introduced to Europe from America at the beginning of the 20th
century. Since then, it has successfully spread across the continent and displaced the red
squirrel from much of its home range. Although an innate competitive advantage of the
gray squirrel over the red one was found, this advantage was not sufficient to explain
the rate of the gray’s expansion and the intensity of the red’s decline. Parapoxvirus has
been postulated to speed up competitive replacement. To test this hypothesis, a two-host
disease model is needed. Tompkins et al. [35] considered the following SIR (gray) – SI
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(red) model with interspecific competition:

dSG
dt

=
(

aG − NG + cRNR
KG

)
NG −βGGSGIG −βGRSGIR −bGSG

dIG
dt

= βGGSGIG + βGRSGIR − γGIG −bGIG

dRG
dt

= γGIG −bGRG

dSR
dt

=
(

aR − NR + cGNG
KR

)
NR −βRGSRIG −βRRSRIR −bRSR

dIR
dt

= βRGSRIG + βRRSRIR −bRIR −αRIR

(61)

Note that this model is non-spatial so that it is suitable for model squirrel competition
only at the level of an individual forest. Application of the parameter values of [35] in-
deed shows that the red squirrels are replaced by the gray ones faster when parapoxvirus
is present in the system relative to when it is absent (Fig. 14).
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Fig. 14. Competition between gray and red squirrels in the presence or absence of the para-
poxvirus in the system. Adapted from Keeling and Rohani (2008).

Of course, a more realistic model needs to account for space (to allow exploration
of the invasion across Europe) and must be stochastic (as invasions and extinctions
involve a low number of individuals). Tompkins et al. [35] developed and simulated
such a model as well, clearly showing that parapoxvirus is indeed a potential agent of
the observed displacement of the red squirrels by gray ones in Europe. But as we can
see, even the simple, non-spatial and deterministic model highlights the importance of
parasites in affecting competition.
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5 Appendix: A Method for Calculating R0

Here we briefly sketch and apply to a more complex epidemiological model the method
by van den Driessche and Watmough [36] on calculating the basic reproduction number
R0. Consider a heterogeneous population whose individuals are distinguishable by age,
behavior, spatial position and/or stage of the disease, but nevertheless can be grouped
into n homogeneous compartments. That is, the parameters may vary from compartment
to compartment, but are identical for all individuals within a given compartment. Let
x = (x1, . . . ,xn)′, xi ≥ 0 for all i = 1, . . . ,n, be the vector of densities of individuals
in each compartment. Let us sort the compartments so that the first m compartments
correspond to infected individuals.

In order to compute R0, it is important to distinguish new infections from all other
changes in the host population. Let Fi(x) be the rate of appearance of new infections
in compartment i, V +

i (x) be the rate of transfer of individuals into compartment i by all
other means, and V −

i (x) be the rate of transfer of individuals out of compartment i. It is
assumed that each function is continuously differentiable at least twice in each variable.
Any model of infectious disease dynamics can be formulated as

dxi
dt

= fi(x) = Fi(x)−Vi(x), i = 1, . . . ,n (62)

where Vi(x) = V −
i (x)−V +

i (x) and the functions satisfy some technical yet epidemio-
logically plausible assumptions described in detail in [36]. These authors showed that if
x0 is the DFE of (62) and fi(x) satisfy those technical assumptions, then the derivatives
DF (x0) and DV (x0) can partitioned as[

F 0
0 0

]
and

[
V 0
J3 J4

]
where F and V are the m×m matrices defined by

F =
[

∂Fi
∂x j

(x0)
]

and V =
[

∂Vi
∂x j

(x0)
]

with 1 ≤ i, j ≤ m

Moreover, F is non-negative, V is invertible with eigenvalues whose real parts are pos-
itive, and all eigenvalues of J4 have positive real part.

Now, consider the fate of an infected individual introduced into compartment k of a
disease-free population. The ( j,k) entry of V−1 is the mean length of time this individ-
ual spends in compartment j during its lifetime, assuming that the population remains
near the DFE and barring reinfection. The (i, j) entry of F is the rate at which infected
individuals in compartment j produce new infections in compartment i. Hence, the (i,k)
entry of the product FV−1 is the expected number of new infections in compartment
i produced by the infected individual originally introduced into compartment k. The
matrix FV−1 is usually referred to as the next generation matrix for model (62). Setting

R0 = ρ(FV−1) (63)

where ρ(A) denotes the spectral radius of a matrix A (that is, the eigenvalue of A with
the maximum absolute value), the following theorem of [36] states that R0 is a threshold
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parameter for local stability of the DFE: Consider the disease transmission model given
by (62) with fi(x) satisfying the above-mentioned technical assumptions. If x0 is the
DFE of this model, then x0 is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1, where R0 is defined by (63).

As an example, we apply the procedure described above to the following epidemi-
ological model:

dS
dt

= b(S + I)− (d + d1N)S−β
S(I + Z)

N
dI
dt

= (1−σ)β
S(I + Z)

N
− (d + d1N)I −αI

dZ
dt

= σβ
S(I + Z)

N
− (δd + d1N)Z −αZ

(64)

This is an SI model of an infection that causes both disease-induced mortality α as
well as reduction in the birth rate – a fraction σ (0 ≤ σ ≤ 1) of infectious individuals
are assumed to be sterilized due to the disease (Z) and the remaining fraction is able
to both spread the virus and reproduce (I). As the sterilized individuals do not “waste”
resources in reproduction, they are assumed to live longer; that is why their intrinsic
death rate d is reduced by a factor δ (0 < δ ≤ 1). In the absence of infection the total
host population density evolves as

dN
dt

= bN − (d + d1N)N = rN
(

1− N
K

)
where r = b−d and K = (b−d)/d1; this implies the DFE (K,0,0).

Let us first sort the state variables so that the first two of them represent infected
classes: (I,Z,S). We have

F =

⎡
⎣(1−σ)β S(I + Z)/N

σβ S(I + Z)/N
0

⎤
⎦ , V =

⎡
⎣ (d + d1N)I + αI

(δd + d1N)Z + αZ
−b(S + I)+ (d + d1N)S + β S(I + Z)/N

⎤
⎦

as only the transmission terms generate new infections in the model (64). This implies

F = β
[

1−σ σ
1−σ σ

]
, V =

[
b + α 0

0 b− (1− δ )d + α

]
and hence

FV−1 = β
[
(1−σ)/(b + α) (1−σ)/(b− (1− δ )d+ α)

σ/(b + α) σ/(b− (1− δ )d + α)

]
of which the maximum (in the absolute value) eigenvalue, equal to R0, is

R0 =
β
2

(
1−σ
b + α

+
σ

b− (1− δ )d + α

)
Note that R0 is independent of d1, the strength of negative density dependence in the
natural mortality rate of hosts. We can deduce that the first term of R0 is the contribution
of those infectives that stay fertile, while the latter is due to those infectives that become
sterilized, and R0 is the average of the two.
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Abstract. In this paper two examples of spatio-temporal modeling of air 
pollution data are illustrated. In the first one, the attention focuses on the issue 
of separability while in the second, under the separability hypothesis, the 
emphasis is on the advantages of the hierarchical specification of a space-rime 
model. The motivating examples of the two ways of modeling came from the 
same region and concern, respectively, daily ozone and PM10 concentration. 

Keywords: air pollution data, Hierarchical Bayesian models, ozone, particulate 
matter, separability, spatio-temporal models 

1. Introduction 

Quantitative analysis of air pollution data has a long tradition. This kind of data very 
often comes from dedicated monitoring sites equipped by devices that measure, by 
means of techniques that may be not completely standardized across a territory, the 
level of pollutants, each one separately. The location of the monitoring sites is 
decided by local authorities and follows national and international directives. 
Summaries of these data, and subsequent models for interpolating and forecasting not 
necessarily rely on statistics. Deterministic models based on ideas coming from 
chemistry or physics can constitute a very effective tool for helping in decisions, 
without keeping the randomness due to variability and uncertainty into account, 
where variability represents a natural characteristics of phenomena and uncertainty 
can be reduced by means of suitable statistical models relying on probability. 
Data on air pollution have the peculiarity of being collected at different locations and 
along times, so spatial and spatio-temporal models are a natural way for analysis. 
Non-homogeneity of spatial and time data sets and missing data are typical problems 
in this context. Data are collected with methods that are born in laboratories but suffer 
of the measurement errors and the confounding issues typical of observational data. 
They are collected for reasons that are almost administrative, and the values they 

                                                          
1 The research leading to this paper has been partially funded by a 2008 grant (Project no. 
2008CEFF37-001, sector 13: Economics and Statistics) for research of national interest by the 
Italian Ministry of the University and Scientific and Technological Research.
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assume may be influenced by human activities and natural environmental chemical 
reactions.  

Trends detection is fundamental for monitoring the state of the environment. The 
analysis of the spatio-temporal trend, or expected value, is typical of the investigation 
of large-scale variation; for small-scale variability the focus is rather on the spatio-
temporal covariance, or correlation function. A common purpose of this data 
collection is, however, monitoring the effects on human and animal health, the 
possible effects on biodiversity and forecasting 

The most commonly analyzed pollutants are CO, SO2, particulate matter, O3, Nox,
but, because of their danger on human health, also data on benzene and other 
carcinogenic pollutants are being extensively collected. 

The behavior of ozone is frequently explored in these studies, see for instance [1], 
[2] and [3]. This secondary pollutant, even if not catastrophic for human health, is 
important as a benchmark for monitoring more complex pollution situations.  

The way of collecting data on air pollution is continuously evolving. The example 
of particulate matter is worth to be mentioned: in current air pollution studies, it is 
measured by weighting. Since it was discovered, along years, that the finest 
particulate is the most harmful for health, the measurements of interest changed from 
total suspended particulate TSP, to PM10 [4],  then to PM2.5 [5] and ever finer 
particles. Other types of studies, rather, investigate the compositions of different sizes 
of particulate along vertical profiles [6]. 
Studies on single pollutants will be presented. However, the most promising studies 
concern the effect of interactions between pollutants on human health [7]. Information 
on meteorology may also be included in studies on air pollution: this ought to reduce 
the uncertainty of the model, mainly for prediction and be successful in taking 
confounding effects into account [8].

In what follows two examples of spatio-temporal modeling of air pollution data 
will be given. In the first one [9], the attention focuses on the issue of separability 
while in the second [10], under the separability hypothesis, the emphasis is on the 
advantages of the hierarchical specification of a space-rime model. The motivating 
examples of the two ways of modeling came from the same region and concern, 
respectively, daily ozone and PM10 concentration. 

2. Spatio-temporal non-separable models 

For studying a spatio-temporal process, the hypothesis of normality is frequently 
assumed. Data transformations (like square root, logarithm or Box-Cox 
transformations) are proposed in order to be allowed to use the Gaussian model, that 
is very convenient since it is fully defined by its first two moments. 

The construction of a suitable model for the covariance is the tool for embodying 
both the temporal and spatial components [11]. The estimation of space-time 
covariance models is facilitated by simplifying assumptions that ought to be proposed 
and tested. The simplest models assume therefore spatio-temporal stationarity, and the 
separability of spatial and temporal components. A further simplifying assumption is 
isotropy. 
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A spatio-temporal random field Z(t, x) is considered to be strictly stationary within 
its space-time domain T ×S if its spatio-temporal law is invariant under translations. 
A more restrictive property based on moments of the spatio-temporal process is 
second-order stationarity, involving only the first two moments of the spatio-temporal 
random field Z(t, x): the mean function is modelled as a constant, and the space-time 
covariance function is assumed to depend exclusively on the spatial and temporal 
lags. Strict stationarity alone implies second order stationarity if the first two 
moments exist, whereas second-order stationarity only implies strict stationarity if the 
Z(t, x) random field has a Gaussian distribution. 

Isotropy is an additional assumption of stationarity about the spatial component of 
the spatio-temporal correlation function, when it does not depend on direction but 
only on distance. Appropriate adjustments are often made to the coordinate system, 
such that the correlation structure may be considered isotropic [12], [13]. 

A spatio-temporal model is separable if its space-time covariance function can be 
expressed as a product of two functions: a function of space and a function of time . 
The first contribution about non-separability is due to [14], who used an approach 
based on Fourier transforms. Then [15] proposed a general class of non-separable, 
stationary covariance functions for spatio-temporal random fields directly in the 
space-time domain (via a construction not based on the inversion of a Fourier 
transformation). These two contribution share one important feature: the assumption 
of stationarity in both time and space. A number of statistical tests for separability 
have been proposed, based on parametric models [16], likelihood ratio tests and 
subsampling [17], or spectral methods [18] and [19].  

2.1  A general spatio-temporal model 

A general model for spatio-temporal data � �� �,Y t x measured in discrete time 

and continuous space � 1,...,t � �T � �2x�	  may be formulated as follows: 

� � � � � � � � � �, , , ,Y t t Z t W t t
 �� � � 
x x x x ,x

�

  (1) 

where  is the spatio-temporal mean field or trend, and the stochastic 

component is a single term 
� ,t
 x

� � � � � �, , ,Z t W t t�� 
x x x , with zero-mean, while the 

spatio-temporal correlation function is still to be specified. The component is

a zero-mean smooth Gaussian spatio-temporal underlying process, and  is an 
independent zero-mean random-error term. Model (1) has three independent additive 
components 

� �,W t x

� �,t x�

,   and W
 � .
Due to this independence, model estimation is usually performed component-wise. 

A) In some cases the focus is on trend estimation: generally speaking, the mean 
component can be viewed as deterministic or stochastic. When covariates are 
available, a regression-type estimator may effectively represent the trend component 
[8]. When there is no specific focus on trend detection, and no covariate is available, a 
trend component may be expressed as a simple function of spatial coordinates. B) 
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When interest is on the spatio-temporal structure, the process � �,Z t x is analyzed. 
Separable spatio-temporal models are relatively easy to estimate, but situations 
requiring non-separable models are very common. Non-separability may arise from 
process non-stationarity. 

The original process Z can be expressed, via an appropriate transformation,  as a 
function of a separable process � � � � � �� �* , :   ,  = ,Z t Z t f Z tx x * x . For a separable 
process V, the spatio-temporal correlation function is the product: 

� � � � 2
1 2Corr( , , ', ' ) = (| - '  |) (  - '  )           , ' 1,..., ,   , 'V t V t t t t t T� � � �	x x x x x x   (2) 

and 1�  and 2�  are, respectively, functions of time and space only. 
A way for modelling spatio-temporal processes starts from the specification of 

their spatio-temporal correlation function. This is particularly suitable when the 
removal of temporal non-stationarity leads to a separable spatio-temporal correlation 
function. 

2.1  Ozone in Emilia Romagna, Po Valley  

Following a conjecture about the spatio-temporal distribution of ozone in a region of 
the Po valley, we explored [9] the idea of non-separability due to temporal non-
stationarity through the transformation: 

� � � � � �* 2
,, , , ;             1,..., ,      tY t t Z t t T
 �� � �xx x x x�	

�

                (3) 

leading to � ,Z t x in the spatio-temporal model (1). In (3), the multiplicative 
parameter ,t� x  represents the component of non-stationary temporal variability 
which, when removed, leads to separable space and time correlation components. The 
subscript t  denotes an empirically derived temporal reference set for this scale 
parameter, and the subscript x denotes the spatial coordinates at each site.  

Let us assume that a large-scale temporal process underlies the separable spatio-
temporal process �* , �Z t x  in (3), which can be further modelled as a combination of 
simpler processes:  

� � � � � �* 2
1 2, ,             1,..., ,      Z t Z t Z t t T�� 
 � �xx x 	x                      (4) 

a time-dependent process, that applies over the entire spatial domain, denoted by 
� �1Z t , and a temporally uncorrelated space-time process, � �2 ,Z t x , which is suitable 

when the spatio-temporal process does not radically change with time, i.e. when it 
displays similar temporal structures across space; �x  is a site-specific coefficient for 
the process � �1Z t  that may vary from site to site. 
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Anisotropy, can be removed by deformation analysis, see [12] and [13]. 
Deformation may be applied to � �* ,Z t x , when the spatio-temporal model considered 

is (3), or to � �2 ,Z t x , when model (4) is assumed. 
In our work on tropospheric ozone in a sub-region of the Italian Po Valley [9], we 

detected a high spatial correlation structure, similar temporal structures along space 
and strong persistence as temporal lags increase. This agrees with other studies on 
fine particulate in the same region [10], confirming that the area may be perceived, 
for geographical, meteorological and anthropic reasons, as a part of a unique 
metropolitan area covering the entire Po Valley.  

The data set at disposal consists of tropospheric ozone measurements from 31 
monitoring stations situated throughout the Emilia-Romagna Region of Italy. Ozone 
concentrations are measured on a daily time scale, expressed in terms of daily 
maximum 8-h moving averages computed from hourly ozone concentration data 
recorded in micrograms per cubic meter, �g/m3, over a five-year period (between 
1998 and 2002).

The trend component in (1) is estimated using a Median Polish algorithm, 
and includes a seasonal effect, meaning that the annual ozone cycle is very important, 
a yearly effect and a spatial effect. The seasonal cycle shows higher values during the 
summer days, and lower values during colder winter days. The year effect seems to be 
slightly decreasing over the five-year period considered. The spatial effect underlies 
higher values in the central area of the region, corresponding to Bologna, the largest 
city in the entire area. 

� ,t
 x�

l

The decreasing behavior of the spatio-temporal correlation function is modelled 
exponentially, as a function of spatial lag d that can be defined as in (2) for each 
temporal lag l (currently l=1,…,3, since temporal correlations fall near to zero beyond 
3 days), as follows:  

 Corr( , ) =  · exp(- /  )ll � �d d                             (5)

The two coefficients l� and l�  are estimated for each lag and for each spatio-
temporal process.

After the estimation of ,t� x , an empirical check is performed to assess whether a 

separable spatio-temporal process � �* ,Z t x  has been obtained. This is performed 
checking whether the ARMA model that better fits every spatial point have the same 
parameters. Indeed, an ARMA(1,1) with very similar parameters was obtained, that 
indicates the spatial invariance of the structure in time.  

The empirical check of the invariance of the temporal correlation structure in space 
suggests a spatio-temporal process � �* ,Z t x  as in (3), with separable spatio-temporal 
correlation function (2); the temporal correlation 1� is expressed as an ARMA(1,1) 
autocorrelation function found to be suitable, whereas for the spatial correlation 
function 2� we retain the exponential model (5).   
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The �* , �Z t x  process is then decomposed in the process � �1Z t  using a principal 

component analysis and the � �2 ,Z t x  is finally estimated. Removal of the large scale 

process � �1Z t  overcomes the correlation for large distances, leading to correlations 
that tend towards zero within the spatial range of the data. 

3. Separable spatio-temporal hierarchical modeling 

Hierarchical modeling is a different way for managing spatio- temporal data. The 
aspects that can be underlined are again the detection of long-term space and time 
trends, the consideration of confounding effects and measurement errors, adjustment 
for missing data, prediction for locations where data are not available. Meteorological 
variables can be also considered. Different forms of variability, due respectively to 
space, time, presence of specific meteorological conditions can be modeled and 
assessed: each component can be attributed to relatively simple sub-models that 
together constitute a complex general model [20].   

3.1  A general separable hierarchical space-time model  

Consider a pollutant (Y) observed at S spatial locations and T time points, and a set of 
p meteorological variables (M) and q spatially varying constant in time explanatory 
variables (X). In a three stage hierarchical model [10], the first stage specifies a 
measurement error model for the observed pollutant level, the second stage deals 
with temporal and spatial modelling, while the final stage completes the Bayesian 
formulation by specifying hyperpriors on the hyperparameters. 

Let  denote the S-dimensional vector of observed pollutant concentrations at 
day t (t=1,…,T). At the first level of the hierarchy, observations are modelled as 
independently distributed under the assumption of normality: 

t�Y

� �� �2| , ~ ,t t tMVN diag� � � � �Y � � � �2                                   (6) 

Let  denote the p� S matrix covariates varying in time t (t=1,…,T) for the S
spatial locations and let X be the q

t�M
� S matrix of the constant-in-time spatial 

covariates: 

' '
t t t t�� � �� 
 
 
s t�� X � M � 1 �                                                (7) 

where  and  are respectively q� t�� � 1 and p� 1 vectors of coefficients, s1  is a s-
dimensional unit vector,  denotes the S-dimensional vector of pollutant mean 
levels at day t,

t��

t�  and  are respectively temporal and spatial random effects. In 

this model 
t�

2 ..., S

�

� 1 2 , �2 2 , 2� � �� ��  represents the vector of residual variances in the S
monitoring sites. The error variance does not depend on time, while different 

81



monitoring sites are allowed to have different unexplained variances, i.e. different 
measurement errors. In (6) and (7) data are viewed as a time series of spatial 
processes. 

With regard to �, the most general model is characterised by coefficients varying 
in

h remains unexplained by the relationship 
wi

space and time, see [21] and [22] for a detailed discussion. The vector of 
parameters � models the overall site-specific mean, according to site-specific 
constant-in-time features and capture the overall mean level at each monitoring site, 
without effect on the temporal dynamics. 

Spatial and temporal dependence whic
th explanatory variables is modelled at the second level of the hierarchy by means 

of the temporal random effect t�  and the spatial random effects t�� . At each time t,
data are generated from the sam  spatial process while, at each location s, each time 
series is generated from the same temporal process. Modelling space and time 
independently allows a straightforward evaluation of the sources of variability of the 
pollutant generating process. 

Parameters �  model the re

e

sidual temporal dynamics characterising the pollutant 
generating process, once the effect of meteorological conditions has been accounted 
for, by  a random walk model, as a first-order smoothing non-stationary temporal 
model: 

� �2
1 ,     ~ 0,t t t t N �� � � � ��� 
                                       (8) 

quations (6)-(8) have a representation in terms of dynamic linear models [23].  
W

E
ith regard to spatial modelling, the terms t��  in equation (7) represent spatially 

correlated random effects: at each time t, the random effects � �• 1 2, ,...,t t t tS� � ���
follow a multivariate normal distribution with mean vector 0S and S S�  correlation
matrix � :

� �2 2| , ~ ,t SMVN� �� ��� � 0 �                                        (9) 

arameter 2
��P  plays the role of between-site variance. The ss’ entry of the 

co trixrrelation ma  denotes the correlation between sites s and s’, and can be specified 
in several ways, as a function of the decay of correlation with distance. A popular 
correlation function is the exponential: 

� �' 'expss sd�� � � s

his covariance model is isotropic, since the correlation between two generic sites 
de

T
pends only on the distance between them. The logarithm of the correlation is a 

linearly decreasing function of distance 'ssd . The parameter 0� �  describes the 
decay rate of correlation as a function of di ance. This spatial structure is assumed 
constant over time, the underlying assumption being that spatial and temporal 
processes are separable. 

A constraint is neede

st

d for model identifiability, because of the simultaneous 
presence of the random effects �  and �, in this case a zero mean constraint on the 
spatial random effects at each tim  t. With this parameterisation, parameters te � ’s can 
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be viewed as time dependent intercepts capturing the regional mean pollutant level, 
ts�  is the deviation from the regional mean at day t for the site s, due to the spatial 

cess unexplained by the dependence on the explanatory variables.  
In the Bayesian framework, model hierarchy is completed by the s

pri

pro
pecification of 

or probability distributions for parameters and hyperparameters. If, at the second 
stage, a model is proposed for the regression coefficients, then hyperpriors are 
needed for model hyperparameters. As regards spatial and temporal model 
hyperparameters, a prior distribution is needed for parameters 2

�� , 2
��  and � .

Inference about the parameters of interest is based on their os ior dis rib p ter t ution 
given the data. These posterior distributions are seldom available in analytical form 
because of the complexity of the probability distributions involved and have to be 
approximated via MCMC algorithms. 

This modelisation allows for assessing the contribution of the spatial and temporal 
components together with that of meteorological variables to total variability. We 
used an approach that follows [24] for decomposing the variability of the complete 
hierarchical model by means of the relationship:  

� � � � � � � �

� � � � �
• • •

' '
• • •

| | | |

, | , | , |

s s s

s s s

E V E V V V

Cov Cov Cov


 
� �� � �
�
 
 
 �

� Y � Y M � Y � Y

� � Y � M � Y M � � Y

'�� 


�•s

he proposed model permits also the spatial prediction at unmonitored sites, 
pos

T
sible after a suitable interpolation of meteorological covariates for that site. 

Sampling is performed from the posterior predictive distribution  

� � � � � � � �' ' ' 'ts s ts t ts
' '| | | |
 � �� 
 
 
Y X � Y M � Y Y | Y

re whe '
'sX and are respectively space varying constant-in-time and space-time-

o es o

Particulate in Emilia Romagna, Po Valley  

10 concentrations measured at 11 

'
'tsM

varying c variat bserved at site s’.

3.2  

The model has been applied [10] to daily mean PM
monitoring sites located in the main cities of the Italian Emilia-Romagna Region from 
January 1st 2000 to December 31st 2002. Data have been logarithmically transformed 
to obtain a symmetric distribution for each monitoring site and to stabilize the mean-
variance relationship. A strong correlation among site measurements occurred, 
ranging from 0.86 for the nearest sites to 0.6 for those further away. A strong 
correlation between distant monitoring sites time series remains: a considerable 
amount of the between-sites correlation is due to the common temporal dynamics of 
the data.  

Meteorological variables for each site are obtained from a meteorological 
forecasting model. In this way, homogeneous covariates for the spatial detail of the 
PM10 monitoring sites are available, thus avoiding the problem of spatial 
misalignement as well as missing values in covariates. In the model we used daily 
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mean mixing height (MH) and daily mean wind speed (WS). The dependence of 
PM10 levels on MH has a physical explanation since, when MH is low, the particulate 
matter does not spread throughout the atmosphere, and thus a negative relationship is 
expected between MH and PM10.

If tsY , tsMH  and tsWS  denote, respectively, the log of PM10 concentration, the 
mixing height and the wind speed at spatial location  ( =1,…,11) on day 

1,…,10 nd (C1s 2s) are the spatial coordinates of site s, equation (7) is 
specified as: 

s s t
(t= 96), a , C

1 2 1 3 2 1 2ts s s s ts ts t tsZ C C MH WS
 � � � � � � �� 
 
 
 
 
 
 .

where the variable Z is defined as follows: 1sZ �  if the site s is a background urban 
area like a park, otherwise 1sZ � � . Param 2eters �  and 3�  capture the large-scale 
spatial trend, while coefficients 1�  and 2�  capture the dependence of log-PM10

concentrations on the considered meteorological variables. The isotropy assumption 
does not seem to be overly restricti e, since e meteorology of the Po Valley Region 
is spatially stable. Model hierarchy is completed by the prior specification of the 
hyperparameters distributions. 

The posterior distributions of model parameters �2 and �3 indicate a decreasing 
spatial trend in North-South an

v  th

d West-East directions. A negative relationship has 
been estimated between the meteorological variables and the level of PM10
concentrations. Using the original scale of meteorological variables, when MH
increases by 100 m, there is an estimated decrease of 0.02 in PM10 concentrations (in 
the log scale); whereas when WS increases by 1 m/s, a decrease of 0.04 in PM10
concentrations (on the log scale) is estimated.  

As regards the decomposition of the overall model variance � �|sE V �� �� �� Y  it is 
mainly attributable to the time process � , which accounts for abo total 

plained variance. Spatial random effects account for a s
variability (about 18%), while the contribution of meteorological variables is about 
5%. Covariances between spatial, temporal and meteorological components are 
negligible.  

Analogously to ozone concentration studied in Section 2, the observed time series 
can be broadly

ut 68% of the 
ex maller portion of 

 thought of as replications of the same temporal process, with a weak 
lar
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Exact vectorization of a bitmap in biological modelling 
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Mendel University in Brno, Faculty of Agronomy, Dept. of Automobile Transport, 
Zem�d�lská 1, 613 00 Brno, Czech Republic

Abstract. The paper presents a software procedure (using MAPLE13) intended 
for considerable reduction of a digital image data set to a more easily treatable 
extent. An example with image of a carrot is presented. The carrot, displayed on 
the digital photo, was represented as a polygon described by the coordinates of 
the pixels creating its perimeter. The photos taken in high resolution (and 
corresponding data sets) contain coordinates of thousands of pixels – the 
vertexes of the polygon. The approach presented substitutes this polygon by a 
new one, where a smaller number of vertexes is used. The task is solved by 
using an adapted least squares method. The presented algorithm enables 
reduction of number of vertexes to 10% of its original extent with acceptable 
accuracy ± one pixel (distance between initial and final polygon). The 
procedure can be used for processing of similar types of 2D images and 
acceleration of following computations. 

Keywords: Image processing, data reduction, least square method. 

1. Introduction 

The acquisition and analysis of visual information represents a powerful tool for 
interpretation of a large range of input data. The origin of computer vision is 
intimately intertwined with computer history, having been motivated by a wide 
spectrum of important applications such as robotics, biology, medicine, industry and 
physics, but also agricultural and food sciences over the last decades. Among the 
different aspects underlying visual information, the shape of the objects certainly 
plays a special role. The multidiscipline nature of image analysis, with respect to both 
techniques and applications, has motivated a rich and impressive set of information 
resources represented e.g. by [4].  

Precise and correct image processing enables solving problems of a 
multidisciplinary nature, completing images and objects in terms of features 
(implying several distinct objects to be mapped into the same representation), pattern 
recognition used for segmenting an image into its constituent parts, proper validation 
of algorithms, and/or improving the relation between continuous and discrete 
approaches.  

In fact “computer vision” (or generally image processing) often requires, 
sometimes in real time, processing of very large and heterogeneous data sets 
(including shape, spatial orientation, color, texture, motion, etc.). Extensive image 
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files or series of images are processed e.g. in biological studies [10], [8], but also in 
agricultural sciences [13] or food sciences [5], [9]. In spite of increasing hardware 
performance, large or sometimes huge data sets often cause problems and certain data 
reduction, regularization and/or modification is needed. There are several generally 
accepted approaches to achieve this task. One of the most commonly used methods is 
Principal Component Analysis (PCA). Principal Component Analysis is a technique 
that simplifies data sets by reducing their dimensionality. It is often used to 
decompose shape variability into a reduced set of interpretable components. It is an 
orthogonal linear transformation that spans a subspace, which approximates the data 
optimally in a least-squares sense, see [7]. This is accomplished by maximizing the 
variance of the transformed coordinates. If the dimensionality of the data is to be 
reduced to N, an equivalent formulation of PCA is to find the N-set of orthonormal 
vectors, grouped in the P matrix, which minimizes the error made when 
reconstructing the original data points in the data set. This method has been 
successfully used in number of works – see e.g. [11], [6], [5]. There are alternative 
approaches such as LDA (Linear Discriminant Analysis) – see e.g. [12] or PFA 
(Principal Factor Analysis) – see e.g. [1].   

This paper presents a completely different approach, where input image data are 
significantly reduced (up to 10% of the original extent) by means of the MAPLE13 
algorithm without loss of precision. An example with carrot is presented. Reduced 
data sets can be consequently used for faster processing and/or further utilization. The 
MAPLE software environment has been successfully used for determination of the 
shape of agricultural products [2] ,[3], [4]. 

2. Material and methods 

2.1   Digital photo 

A sample digital photo of a carrot (bought in May 2010 in Kaufland, Ji�ín) has 
been used. But any similar object of natural or artificial origin could have been used. 
The photo was taken with a Panasonic DMC-T27 digital camera with a resolution of 
10.5 megapixels, see Fig. 1.  

 

Fig. 1. A sample digital photo of the carrot  
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2.2   Processing software 

The software MAPLE13, classic has been used to perform all presented 
calculations. 

2.3   Mathematical background 

The best line  
Let us assume a polygon given by the list of N points with coordinates [[X1, Y1], …, 

[Xi, Yi], …, [XN, YN]]. Let us select sublist of vertexes N1, …, N2, 1 � N1 < N2 � N, 
N2 - N1 � 2. The task is to find parameters of common line p1 which will minimize 

� i= 1

N
d i

2 , where di = length of the line segment between ith and pi th point. The point 
pi th  is the intersection of the line perpendicular to the line p1 going through ith point 
with the line p1. 

Lists of lines and corresponding points 
After defining the best line, the procedure can continue in computing the best line 

for remaining points from the list of the vertexes and smoothing the polygon. 

Estimation of accuracy 
After polygon approximation it is possible to compute distances di for input 

polygon vertexes using corresponding line segments. It is possible to compute their 
average values and variance. These values may be used to determine accuracy of 
approximation. 

Maple procedure 
The complete Maple procedure for the presented approach can be seen at the end 

of this article. 

3. Results and discussion 

3.1   The best line 

The best form of the line p1, corresponding to the above-mentioned problem is, 
p1 = (x – Qx) sin(�) + (Qy – y) cos(�) , where [Qx, Qy] are coordinates of the point 
lying on this line and � is its direction angle, see Fig. 2. 
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Fig. 2. The best line 

In this case the coordinates of the  pi th point are as follows: 

Xpi = (-Qx cos(�) – sin(f) Qy + sin(�) Yi + Xi cos(�)) cos(�) + Qx 

Ypi = (-Qx cos(�) – sin(f) Qy + sin(�) Yi + Xi cos(�)) sin(�) + Qy . 

(1) 

The square of the distance from the line p1 is di
2 = (Xi – Xp i)2 + (Yi – Yp i)2, where Xp i 

and Yp i are defined by the equation (1). The sum of the squares of the distances di for 

all N points is � i= 1

N
d i

2= SoS , 

SoS = -2 cos(�) sin(�)(Qx Qy (N2 – N1 +1) + �2 – Qy �3- Qx �4)  

+ ((N2 – N1 + 1) Qx
2 – 2 Qx �3 + �1) sin(�)2  

+ ((N2 – N1 + 1) Qy
2 – 2 Qy �4 +�5) cos(�)2 , 

(2) 

where 

� 1= � i= N1

N2
X i

2 , � 2= � i= N1

N2
X i Y i , � 3= � i= N1

N2
X i ,

� 4= � i= N1

N2
Y i , � 5= � i= N1

N2
X i

2 .
 (3) 

These substitutions accelerate computation of � i= 1

N
d i

2 , because it is faster to 
calculate all sums only once and to substitute obtained results instead of computing 
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each sum as indicated in (2) or in the following expressions. The condition for the 
global minimum of SoS(Qx, Qy, �) is ��SoS/��Qx = 0, ��SoS/��Qy = 0, and ��SoS/��� = 0. 
The first and second equation consequently yields in Qx = �3/(N2 - N1 + 1), and 
Qy = �4/(N2 - N1 + 1),. If these values are substituted into the third equation, the 
result has the following form:  

S2 sin(�)2 + S1 cos(�) sin(�) + S3 cos(�)2 = 0 ,   where 

S1 = 2 (�4
2 + (1 + N2 – N1) (�1 – �5) – �3

2) , 

S2 = 2 (�2 (1 – N1+ N2) – �4 �3 ,  

S3 = 2 (�2 (–1 + N1 – N2) + �4 �3) 

(4) 

simplify equation (4) and its solution for �. Equation (4) has two roots: 

����1

�

 

!!!!

"

#

$$$$
arctan � �
�

S1

2
���S1

2 4 S2 S3

2 S2
and ����2 �

�

 

!!!!

"

#

$$$$
arctan �
�

S1

2
���S1

2 4 S2 S3

2 S2 . 
(5) 

 
The first root leads to the global minimum of the SoS, the second one to the global 

maximum. Therefore it is possible to continue with � = �1. Following substitution 

���( )cos �
S2

�
� �
� ���2 S2
2 S1

2 S1 ���S1
2 4 S2 S3 2 S2 S3

 

and 

���( )sin �
( )�
�S1 ���S1

2 4 S2 S3 2

�
� �
� ���2 S2
2 S1

2 S1 ���S1
2 4 S2 S3 2 S2 S3 2  , 

(6) 

will simplify computations of cos(�) and sin(�). In special cases, when line p1 is 
parallel with x or y axis S2 = 0 this substitution converts into cos(�) = 0, sin(�) = 1, or 
cos(�) = 1, sin(�) = 0. In these cases, proper values of cos(�) and, sin(�) must be 
found, to obtain a smaller value of SoS.

3.2   Lists of lines and corresponding points 

The best line for the first three points from the list of vertexes can be computed as 
follows. Let us assume N1=1 and N2=3 for this particular case. The best line p1 can 
be found for each point with consequent computing of corresponding square of the 
distance di and finding the maximum of distances Dist = max([dN1, … , di, … , dN2]) 
the value is smaller than predefined accuracy L, it is possible to increase N2=N2+1 
and repeat the whole process until accuracy is satisfying. Values of N2, corresponding 
values of Qx, Qy, cos(f), sin(f) describing the best line for the vertexes N1 … N2, and 
Dist can be stored into the lists.  
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The highest N2 satisfying condition Dist < k L can be determined from these lists, 
where k is the correction value depending on smoothness of the polygon. If the 
polygon is smooth k 	 0.5, while for non-smooth polygons k 	 0.2. It is possible to 
use a value of k ~ 0.5, but it must be considered that value Dist is a function of N2 and 
if it once exceeds k L, it may be again lower for higher value of N2. This approach 
leads to a higher number of final polygon vertexes. In this case the data reduction will 
not be so effective. The reason that the value  k=1cannot be used will be discussed 
later.  

As the next step, the points [XP N1, YP N1], [XP N2, YP N2], must be recorded into the 
list LXY, ordinary numbers of the border points N2 are recorded into list LN2, and 
value N1 put equal to N2, (N1=N2). The whole process can be repeated with the 
subsequent vertexes from the list of polygon vertexes. The procedure is repeated until 
N2<N. Finally, both lists will contain n elements. The list LXY can be displayed as a 
list of separate line segments approximating the initial polygon. The ordinary 
numbers of vertexes of the input polygon corresponding to the i-th line can be picked 
from the list LN2 as a series of integer numbers from LN2i-1 to LN2i. These lists 
contain information about line segments – best line and input polygon vertexes 
corresponding to the line segment. But the line segments are not connected with one 
another – see Fig. 3.  

Fig. 3. The best line segments and part of corresponding polygon 

The best line segments are displayed as a red-dashed line, input polygon vertexes 
are displayed as red crosses and polygon vertexes with ordinary numbers N2 are blue-
circled. These points correspond to endpoints of the best line segments. 

The endpoint of one line segment [XP N2, YP N2], and the initial point of the 
subsequent line segment [XP N1, YP N1], correspond to the same vertex of the input 
polygon. These points are very close, but not identical, because they correspond to the 
different line segments. The points are displayed in Fig. 3 as blue boxes – end points 
of the best line segments.  These couples of points can be substituted by their 
midpoints [XC, YC] = 0.5([XP N2, YP N2] + [XP N1, YP N1]), and they are displayed as 
green diamonds in Fig. 3. As a result, a continuous curve is obtained, displayed as 
black line segments, creating a polygon with a reduced number of vertexes 
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approximating the input polygon. Center points will be recorded in a new list LC. 
Because the new polygon vertex [XC, YC] is a midpoint corresponding to the 
projection of the same vertex of the initial polygon to different best lines, this point 
does not lay on these best lines, but it is close to both of them and the new line 
segments do not correspond to the preceding line segments – best lines. Therefore, it 
is necessary to put k < 1.   As k 	 0, these line segments are shorter and the number 
of vertexes of the final polygon increases, but accuracy of the approximation is better. 
A different scale for x and y axis is used for a better overview of Fig. 3. Thus, 
expected right angles are displayed as distorted.  

The result can be displayed graphically, see Fig. 4. The figure displays the carrot 
perimeter described by 1848 colored points. The corresponding polygon is substituted 
by a polygon with 53 vertexes with a predefined accuracy of 1 pixel. Line segments 
and corresponding points all have the same color. The approximating polygon is 
displayed with a blue line and its vertexes are indicated by blue circles. Since the 
difference between line segments – polygon sides and corresponding points is smaller 
then line thickness itself, the points are not visible. It can be seen that with data 
reduction 1:35, the accuracy is satisfying. 

Fig. 4. Carrot shape and its approximation 

3.3.   Estimation of accuracy 

The most effective method is to compute absolute value di and argument �% the 
vector vi = [Xi – Xp i, Yi – Yp i], see Fig. 2, which can be used for the demonstration of 
accuracy precision.  If the best line segment is defined by its endpoints, [XC 1, YC 1] 
and [XC 2, YC 2], see previous section, the distance di 

and orientation���%�can be 
computed using very simple expressions: 

���di

��� �
� ���( )���Xc2 Xc1 Yi ( )���Yc2 Yc1 Xi Xc1 Yc2 Xc2 Yc1

�
�( )���Xc2
2 Xc1

2
( )���Yc2 Yc1

2
, 

(7) 
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����i
�

 
!!!

"

#
$$$

arctan
���Yc1 Yc2

���Xc2 Xc1 , 
where 

���Xc2 LC ,���2 j 1 1 , ���Yc2 LC ,���2 j 1 2 , ���Xc1 LC ,2 j 1 , ���Yc1 LC ,2 j 2 , 
LN2j <= i <= LN2 �
�j 1  and 1 <= j <= n  . 

This approach enables displaying accuracy in polar coordinates. For the carrot 
presented in Fig. 4, the corresponding accuracy is visualized in Fig. 5. As can be seen, 
the real accuracy is ± 0.5 pixels only. This means that the worst accuracy achieved is 
about 0.2 % of the object size and the average accuracy indicated by the thick blue 
line is ± 0.5 pixels, approximately 0.07% of the object size Variances of the accuracy 
are displayed as the thin blue lines. 

Fig. 5. Accuracy of the approximation 
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Fig. 6. Accuracy of the approximation, relative scale, polar coordinates 

It is possible to plot vertexes of the input polygon and the resulting polygon. The 
example with distances di magnified 100 times is shown in Fig. 7. 

Fig. 7. The distance between input and resulting polygons (di magnified 100x) 

4. Program Code 

The complete Maple procedure for the presented approach can be seen on the 
author's personal website:  user.mendelu.cz/barton. 
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5. Conclusion 

The proposed procedure is of a general nature and can be used for data reduction 
in the case of other biological as well as artificial shapes. It can serve as an effective 
and precise tool for acceleration of processing computing and for enabling the 
calculation itself on less powerful hardware, such as a common PC with a computer 
algebra program and/or in case of data processing using non-linear regression 
methods.  
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in olfactory neurons
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Abstract. Several models of olfactory sensory neurons (concentration detectors,
flux detectors) are investigated. Their behavior is described by stochastic pro-
cesses of binding and activation. The models assume that the response, concen-
tration of activated receptors, is determined by the signal, fixed log-concentration
of odorant in perireceptor space. An approach used is based on stochastic vari-
ant of the law of mass action as a neuronal model. The statistical steady-state
characteristics of the models are derived.

1 Introduction

Characterization of the input-output properties of sensory neurons and their models is
commonly done by using the so called input-output response functions, R(s), in which
the response is plotted against the input s. The output is usually the spiking frequency,
or rate of firing, but it can be also concentration of activated receptors as presented e.g.
in [13, 15] and also in this contribution. The response curves are usually monotonously
increasing functions (most often of sigmoid shape) assigning a unique response to an in-
put signal (see Fig. 1 for illustration).

The intuitive concept of “just noticeable difference”, which has been deeply stud-
ied in psychophysics, is also implicitly involved in understanding of signal optimality
in neurons. Having the transfer function R(s) and minimum detectable increment ε of
the response, we can calculate Δs which is the just noticeable difference in the sig-
nal. If the response curve is nonlinear (e.g. sigmoidal as in Fig. 1) we can see that Δs
varies along D and the smallest values of the just noticeable difference in the signal are
achieved where the response curve is steepest. The stimulus intensity for which the sig-
nal is optimal, that is the best detectable, is where the slope of the transfer function is
highest. However, in practice, an identical signal does not always yield the same re-
sponse. The presence of noise complicates the concept of signal optimality based on
the just noticeable difference. Not only a fixed response is assigned to every level of
the stimulus (as in the classical frequency coding schema), but also a probability dis-
tribution of the responses. A concept of using more statistical characteristics of the re-
sponse (not only the mean value) for classification of the stimuli is depicted in Fig. 1b,
where, for simplicity, the mean value and the standard deviation of the response are
shown.
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Fig. 1. (left) A schematic example of deterministic transfer function R(s) (solid curve). The dy-
namic range D, threshold response rmin, maximal discharge rmax and just noticeable difference
Δs in the signal corresponding to the just noticeable difference ε in the response are given.
(b) Stochastic point of view: mean transfer function C(s) (solid) equiped with standard devia-
tions (dashed curves) of R(s). Note, that both quantities play important role in understanding the
relation between changes ε in the response and corresponding Δ in the signal.

2 Modelling the Number of Activated Receptors

Signal processing in olfactory systems is initialized by binding of odorant molecules
to receptor molecules embedded in the membranes of sensory neurons. Binding of
odorants and receptor activation trigger a sequence of biochemical events that result
in the opening of ionic channels, the generation of receptor potential which triggers
a train of action potentials. Models of the binding and activation of receptors investi-
gated in the following sections are based on models proposed in [2, 3, 7, 6, 10, 12, 13,
16].

The models can be, in general, classified into two categories, concentration detec-
tors and flux detectors. In the concentration detector models (see Fig. 2) it is assumed
that the neuronal membrane is directly exposed to the odorant molecules present in
the external space. In other words, it is assumed that the transfer of odorant molecules
between the external space and the perireceptor space is very fast and reversible. Thus
the odorant concentrations in both compartments are the same.

We investigate three types of the concentration detectors which differ in the binding
and activation mechanisms. In the flux detector model (see Fig. 3) it is assumed that
the transfer of odorants from the external to the perireceptor space is relatively slow
and irreversible. Here, the degradation must be included to compensate for the fact that
no possible outflow of the odorant occurs (see [7] for details).

Under the statistical approach the behaviour of the number of activated receptors
is represented as a stochastic process with the odorant concentration as a parameter.
Such a description was used in [1, 5, 8, 9, 14, 17]. We assume that there is only one
odorant substance, that each receptor molecule possesses only one binding site and that
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Fig. 2. Schema of the concentration detector. Ext external air space, Int sensory cell interior,
Mb cell membrane, A odorant, R free receptor, C activated odorant-receptor complex.

Fig. 3. Schema of the flux detector. Ext external air space, Cuti cuticle, Peri perireceptor space,
Int sensory cell interior, Mb cell membrane, AE odorant in external space, A odorant in perire-
ceptor space, R free receptor, C activated odorant-receptor complex, AD degraded form of the
odorant.
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the total number of the receptors on the surface of the membrane is fixed and equal to N.
Let A denote the odorant molecule in perireceptor space and AE in external space, with
concentration A = es (in concentration detector) or AE = es (in flux detector), which is
assumed to be fixed until the olfactory system achieves the steady state.

We distinguish three states in which the receptors can appear: unbound (free) state,
R, bound inactive state, C∗, and bound activated state C. Only activated receptors trigger
the response. The models assume that the response, the count of activated receptors,
C(s), in steady state is completely determined by the signal, which is fixed log-concen-
tration, s, of odorant. Thus, in the models investigated here the count is a dependent
variable with the odorant log-concentration, s, as a parameter.

3 Basic Model

At first we consider the simplest model in which each occupied receptor becomes acti-
vated instantaneously with its occupation. Thus, the number of bound but not activated
receptors is always zero. It is assumed that each receptor is occupied and released inde-
pendently of others in accordance with stochastic reaction schema (as usually used for
the description of chemical reactions)

A+ R
k1−→←−

k−1
C , (1)

where A represents an unbound molecule of odorant, R unoccupied receptor and C
stands for bound activated receptor (complex of the odorant molecule and the recep-
tor), k1 and k−1 are fixed reaction rates coefficients of association and dissociation of
the odorant molecules. The ratio K1 = k−1/k1 is commonly called the dissociation con-
stant. A receptor unbound at time t becomes bound (and activated) in time interval
(t,t +Δ t] with probability λ Δ t +o(Δ t), a receptor activated at time t becomes unbound
in time interval (t,t +Δ t] with probability μΔ t +o(Δ t). The parameter λ is an increas-
ing function of the concentration, A, of the odorant. We consider this dependency to be
linear, λ = k1A = k1es, with the constant of proportionality k1 equal to the rate of asso-
ciation. The parameter μ is considered to be equal to the rate of dissociation, μ = k−1.
As the total number of receptor sites on the surface of the membrane is equal to N,
relation Rt +Ct = N is satisfied for all t ≥ 0.

In line with these assumptions the continuous-time stochastic process {Ct ; t ≥ 0}
giving the count of bound activated receptors at time t can be described as a birth and
death process (see [8, 9, 11]) with birth rates λi and death rates μi,

λi = λ (N − i) = k1(N − i)es , μi = μ i = k−1i (2)

for i ∈ {0,1, . . . ,N}. It means that the transition probabilities are

P
{

(i) Δ t−→ (i+ 1)
}

= k1(N − i)esΔ t + o(Δ t) ,

P
{

(i) Δ t−→ (i−1)
}

= k−1iΔ t + o(Δ t) .
(3)
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This process, independently of the initial condition, achieves a stationary state with
probability distribution with mass function,

πi = P{C(s) = i} =
(

1 +
es

K1

)−N (
N
i

)(
es

K1

)i
, i ∈ {0,1, . . . ,N} . (4)

Using this stationary distribution to derive the mean and variance of the count of acti-
vated receptors in steady state, C(s), we obtain

E(C(s)) =
N

1 + K1e−s , (5)

Var(C(s)) =
NK1e−s

(1 + K1e−s)2 . (6)

As a function of s, the steady-state mean given by equation (5) monotonically in-
creases from 0 to N and it has typical sigmoidal shape with inflexion point located
at s = lnK1. Variance (6) has unimodal shape and its maximum value is achieved for
the same odorant log-concentration s = lnK1. For extremely low and high odorant con-
centrations the variance tends to zero, Var(C(±∞)) = 0. The mean and standard devia-
tion as functions of the log-concentration of odorant are plotted in Fig. 4.
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Fig. 4. (a) Mean E(C(s)) and (b) standard deviation SD(C(s)) of the number of activated recep-
tors in the basic model, as functions of the odorant log-concentration, s, in perireceptor space.
Parameters are K1 = 1 and N = 100. Both the inflexion point of the mean and the point of maxi-
mal standard deviation are located at s = lnK1 = 0.

If the number of receptor sites, N, is sufficiently high, it is natural to consider con-
tinuous variant of the steady-state count of activated receptors C(s) and we need to
know the distribution of such continuous approximation. One possibility how to do it
is to use the central limit theorem. Other legitimate approach is to use the diffusion
approximation of the birth and death process (2), as described e.g. in [17]. Then, C(s)
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is assumed to be continuous Gaussian random variable with the prescribed mean and
variance, C(s) ∼ N

(
E(C(s)) ,Var(C(s))

)
.

4 Model of Simple Activation

Consider now the model where not every bound receptor (complex) is activated im-
mediately. The receptors really appear in three states: unbound, R, occupied but not
activated, C∗, and occupied activated, C. Model described in [11] supposes that each
occupied receptor can either become activated, C, with probability p ∈ (0,1), or stay
inactive, C∗, with probability 1− p, independently of its past behavior and of the be-
havior of other receptors. Such an interaction corresponds to the following reaction
schema,

C∗ k−1−→←−
k1N

A+ R
k1A−→←−
k−1

C , (7)

where k1A = pk1 and k1N = (1− p)k1 are association rate coefficients for the activated
and inactive state and k1, k−1 have the same meaning as in basic model (1).

Denoting by Bt the number of bound receptors, B, at time t, regardless of their
activation, the relation Bt = Ct +C∗

t is satisfied. Then, because of the independence of
behaviour of the receptor sites the binding process follows reaction schema

A+ R
k1−→←−

k−1
B (8)

(compare this with schema (1)), the conditional steady-state distribution is binomial,
(C∞|B∞ = b) ∼ Bi(b, p). From the knowledge of the mass function (4) of the random
variable B∞, the unconditional probability distribution of C(s) can be derived,

πi = P{C(s) = i} =
(

N
i

)
q(s)i (1−q(s))N−i ; i ∈ {0,1, . . . ,N} , (9)

where q(s) = p/(1 + K1e−s). Hence, the steady-state number of activated receptors
has binomial distribution C(s) ∼ Bi(N,q(s)) and its mean and variance can be directly
derived,

E(C(s)) =
N p

1 + K1e−s , (10)

Var(C(s)) =
N pK1e−s

(1 + K1e−s)2 +
N p(1− p)

(1 + K1e−s)2 . (11)

Steady-state mean (10) monotonically increases from 0 to N p and has sigmoidal shape.
Its inflexion point is located at s = lnK1, independently of the value of activation
probability p. For p ∈ (0,0.5], variance (11) is monotonically increasing from zero
to the limit value Var(C(∞)) = N p(1− p). For p ∈ (0.5,1), it increases from zero to
maximal value N/4 achieved at s = lnK1 − ln(2p− 1) and then decreases to the limit
value Var(C(∞)) = N p(1− p). Both the mean and the standard deviation as functions
of the log-concentration of odorant are plotted in Fig. 5. Model (1) is a limit case of
model (7) for p converging to 1.
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Fig. 5. (a) Mean E(C(s)) and (b) standard deviation SD(C(s)) of the number of activated recep-
tors in model of simple activation, as functions of the odorant log-concentration, s, in perireceptor
space. Parameters are K1 = 1 and N = 100. Activation probability p is set to 0.8 (solid curves)
and 0.4 (dashed curves). Inflexion points of the mean curves are located at s = lnK1 = 0 (inde-
pendently on the activation probability p). The variance is either monotonically increasing (for
p = 0.4) or has a maximum located at s = lnK1 − ln(2p−1) ≈ 0.511 (for p = 0.8).

5 Double-step Model

This model has often been used for describing odorant-receptor interaction, see [6, 5,
16]. As in the previous model, the receptors may appear in three different states. The
interaction between unbound, R, bound not activated, C∗, and bound activated receptors,
C, is formed by the transitions via the stochastic reaction schema

A+ R
k1−→←−

k−1
C∗ k2−→←−

k−2
C , (12)

where rate coefficients k2 and k−2 characterize the activation-deactivation process. In
contrast with the model of interaction with simple activation (7), in the double-step in-
teraction it is assumed that occupied receptor can become activated only with a delay
after the binding. Analogously as in the basic model, the stochastic process {Ct ; t ≥ 0}
giving the count of activated receptors at time t can be described as a homogenous
Markov chain with (N + 1)(N + 2)/2 states {(i, j);0 ≤ i+ j ≤ N} and transition prob-
abilities (for time interval Δ t)

P
{

(i, j) Δ t−→ (i+ 1, j)
}

= k1(N − i− j)esΔ t + o(Δ t) ,

P
{

(i, j) Δ t−→ (i−1, j)
}

= k−1iΔ t + o(Δ t) ,

P
{

(i, j) Δ t−→ (i−1, j + 1)
}

= k2iΔ t + o(Δ t) ,

P
{

(i, j) Δ t−→ (i+ 1, j−1)
}

= k−2 jΔ t + o(Δ t) ,

(13)
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where the first coordinate denotes the count of bound not activated receptors and the sec-
ond one denotes the count of activated receptors.

The stationary distribution of C(s) is multinomial; see [4] for general formulae. The
steady-state mean number of activated receptors, C(s), is

E(C(s)) =
N

1 + K2 (1 + K1e−s)
, (14)

where K2 = k−2/k2. The analytical expression of the steady-state variance is very com-
plicated. Nevertheless, it can be computed numerically and as its good approximation
we found the function

Var(C(s)) ≈ a + be−s

1 + ce−s + de−2s (15)

with general parameters a,b,c,d. The steady-state mean given by equation (14) mono-
tonically increases from zero to N/(1+K2) and has (in general) asymmetric sigmoidal
shape with inflexion point located at s = lnK1 + lnK2 − ln(1 + K2). The steady-state
variance fulfills relations Var(C(−∞)) = 0 and Var(C(∞)) = a > 0. Both the mean and
the standard deviation as functions of the log-concentration of odorant are depicted in
Fig. 6.
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Fig. 6. (a) Mean E(C(s)) and (b) standard deviation SD(C(s)) of the number of activated recep-
tors in the double-step model, as functions of the odorant log-concentration, s, in perireceptor
space. Parameters are N = 100; K1 = 1 and K2 = 2 (solid curves), K1 = 1 and K2 = 0.5 (dashed
curves). Inflexion points of the mean curves are located at s ≈ −0.405 (solid) and s ≈ −1.099
(dashed). The standard deviation is either monotonically increasing (solid) or has a local maxi-
mum (dashed).

6 Flux Detector

In contrast with the concentration detector, in the flux detector model, the rate of influx
of odorant from the external to the perireceptor space is quantitatively taken into ac-
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count. This scenario has been introduced in [7] and further analyzed in [10, 16]. The
transfer of odorant molecules between the external and perireceptor spaces is rela-
tively slow and irreversible (no outflux is permitted). The concentration of the odor-
ant in perireceptor space can be substantially higher than outside. Stochastic schema of
the single-step reaction is

AE
kI−→A, A+ R

k1−→←−
k−1

C
k0−→R+ AD , (16)

where AE denotes the odorant of fixed concentration AE = es in the external space, A
odorant in the perireceptor space and AD denotes degraded form of the odorant (cannot
interact with receptors anymore). The parameter kI is the rate of influx of the odorant
molecules from the external to the perireceptor space and k0 is the rate of degradation
of molecules of the odorant. Because of irreversible reaction, the Michaelis-Menten
constant KM = (k−1 + k0)/k1 should be used for description of reaction rate instead of
the dissociation constant K1. Further, let us denote the ratio of the influx and the degra-
dation rates by K = kI/k0.

Continuous-time stochastic process {Ct ; t ≥ 0} giving the count of activated recep-
tors at time t can be described by inhomogeneous birth and death process with transition
rates

λi,t = k1(N − i)At , μi = μ i = (k−1 + k0)i; i ∈ {0,1, . . . ,N} , (17)

where At is the odorant concentration in the perireceptor space at time t. The birth
rates λi,t are time-dependent (inhomogeneous) because of the stable influx of the odor-
ant from the external to the perireceptor space.

The process has a stationary state C(s) if the relation s ≤ lnN − lnK is fulfilled. In
this case the concentration of the odorant in the perireceptor space reaches an equilib-
rium A(s) < ∞. For s > lnN − lnK the process Ct converges to the value C(s) whereas
the odorant concentration At in the perireceptor space grows without bounds. Using
the law of mass action, the deterministic behaviour of the flux detector model can be
described by two independent differential equations for Ct and At . Their asymptotical
solution gives the steady-state odorant concentration in the perireceptor space,

A(s) =
KMKes

(N −Kes)
. (18)

Now we can replace the inhomogeneous birth and death process of the reaction (16)
with the homogenous one according to reaction (1),

λi = k1(N − i)A(s), μi = k−1i; i ∈ {0,1, . . . ,N} . (19)

This is justified by the Markovian property of the birth and death stochastic process.
Analogously as in Section 3 we derive the stationary probability distribution {πi} of
the birth and death process {Ct ; t ≥ 0} with rates (19). Assuming s ≤ lnN − lnK,
the moments of the count of activated receptors have shapes plotted in Fig. 7,

E(C(s)) = Kes , (20)
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Fig. 7. (a) Mean E(C(s)) and (b) standard deviation SD(C(s)) of the number of activated receptors
in the flux detector model, as functions of the odorant log-concentration, s, in perireceptor space.
Parameters are K = 1 and N = 100.

Var(C(s)) = Kes
(

1− Kes

N

)
. (21)

The steady-state mean given by equation (20) is increasing function of the odor-
ant concentration. The variance (as a function of the odorant concentration) given by
equation (21) has unimodal asymmetric shape with maximum value N/4 achieved for
s = lnN − lnK− ln2. For low as well as possible high odorant log-concentrations it be-
comes practically zero. Note the fact that the Michaelis-Menten constant KM does not
play any role in the behaviour of C(s).

7 Conclusion

The stochastic modelling of signal transduction has wide applications in the theory of
classification of the stimuli. An important question ”How precisely can be the stimulus
(odorant concentration) estimated from the knowledge of the response (concentration
of activated receptors)?“ is given. For answering this question in a stochastic concept,
the statistical characteristics of the response presented in this contribution are required.
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Abstract. The paper is devoted to stochastic modeling of biodiversities, that are

presented as selected f-diversities frequently used in biology and medicine. The

most often used in biology and medicine are f-diversities called Number of Alle-

les, Gini-Simpson diversity and Shannon diversity. We have introduced two new

general concepts, named marginal f-diversity and self f-diversity. The statistical

properties of sample estimates of the selected f-diversities are mentioned. Re-

sults of simulations of f-diversities, self f-diversities and marginal f-diversities

for Number of Alleles, Gini-Simpson and Shannon type diversities on the exam-

ple of three alleles with fixed probabilities of occurrence and several sample sizes

used are presented.

Keywords. Biodiversity, modeling, f-entropy, f-diversity, self f-diversity, marginal

f-diversity

1 Introduction

For the complete genetic characteristics of the individual in a given population it should

be necessary to determine the forms of nucleotides in all its loci. In the event that we

are able for a given gene X to determine alleles A1, . . . ,Ak−1, then the rest (till unknown

alleles) we summarize in the category “others" and we understand this category as the

allele Ak. In the event that all individuals of a given population have the same allele

in a considered gene we call the corresponding loci monomorphic. The concept of a

polymorphism is a more complicated because for a given gene there can be one prevail-

ing allele, but there are other alleles with very small probabilities of occurrence. The

corresponding loci are thus called q-polymorphic if the probability of occurrence of the

prevailing allele is greater or equal to a given number q < 1. Mostly q is chosen as 0.99

or 0.995. We then call a given population q-polymorphic for a given gene. Some known

measures of diversity of genes were based on q-polymorphism.

Let us consider r genes with r corresponding pairs of loci, where s pairs are q-

polymorphic. The ratio P = r/s is then called the proportion of q-polymorphic loci.

� The work was supported by the project 1M06014 of the Ministry of Education of the Czech

Republic and by the research institutional plan AV0Z10300504 of the Institute of Computer

Science AS CR
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This measure is a very rough measure of diversity. On a considered loci a variety can es-

sentially change (change of a probability of an allele), but the P value will not change.

Another known measure of diversity is the number k − 1 of known alleles called the

Number of Alleles. This measure is able to show a disappearing of an allele, but gives

no information on probabilities of alleles. In the literature the three following mea-

sures of diversity are often introduced: heterozygosity, the Gini-Simpson index and

the Shannon index of diversity.

Let us denote as pi j a probability that on two corresponding loci an allele Ai is on

the first loci and an allele A j on the second loci. These measures are then calculated as

follows:

heterozygosity H is the probability that on two corresponding loci there are differ-

ent alleles, i.e.

H = ∑
i=1,...,k, j=1,...,k

i�= j

pi j = 1−
k

∑
i=1

pii. (1)

It is obvious that H reaches its maximum if and only if ∑k
i=1 pii = 0, therefore pii = 0

for i = 1,2, . . . ,k. The minimum is reached in the event that ∑k
i=1 pii = 1.

The Gini-Simpson index HGS(p) is calculated from the probability distribution

p = (p1, . . . , pk) of k alleles on a given loci as

HGS(p) = 1−
k

∑
i=1

p2
i . (2)

The Gini-Simpson index has its values in the interval [0,(k − 1)/k], where the lower

boundary 0 is reached if and only if the loci is monomorphic and the upper bound-

ary (k−1)/k for p = uk = (1/k,1/k, . . . ,1/k), uniform probability distribution. In the

event of a panmictic population the Gini-Simpson index and heterozygosity are the

same. However, in the event that the population is not panmictic, these measures can

be different. In genetic literature gene variation known as gene diversity was popular-

ized in the early 1970s by Nei [8]. In ecological literature it has a much older history.

Originally it was suggested as a measure of ecological diversity by Gini [3] and later

discussed by Simpson [11]. Apart from the Gini-Simpson index modifications of it are

used as well, e.g. gene identity J = ∑k
i=1 p2

i and effective number of alleles A = 1/J.

The Shannon information index HS(p) is calculated from the probabilities p1, . . . , pk
of k alleles on a given loci as

HS(p) = −
k

∑
i=1

pi log pi. (3)

The Shannon information index has its values in the interval [0, logk], where the lower

boundary 0 is reached if and only if the loci is monomorphic and the upper boundary

logk for uniform probability distribution p = uk = (1/k, . . . ,1/k).
It is hard to give a universal preference to either of these two measures. Some re-

searchers are more familiar with Shannon entropy and it is easier for them to interpret

concrete numerical values of HS(p) than those of HGS(p). On the other hand, the Gini-

Simpson index is a traditional measure of diversity that has an easy interpretation in
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biology as the probability that two alleles on paired loci are different or as heterozygos-

ity in a panmictic population.

Apart form the above mentioned measures of diversity, the paper of Chakraborty

and Rao [2] introduces the following measures of diversity: α-order entropy of Havrda

and Charvát, paired Shannon entropy, Rényi entropy of order α and γ-entropy function.

We show further that some of them are special cases of the more general concept of

f-diversity.

2 f-diversities

The Shannon information IS(X ;Y ) is defined in information theory as a measure of

association between two random variables X and Y .

IS(X ;Y ) = ∑
x,y

p(x,y) log
p(x,y)

p(x).p(y)
, (4)

where p(x,y) are the joint probabilities and p(x), p(y) marginal probabilities of values

of random variables X and Y .

The Shannon information IS(X ;Y ) is non-negative and equal to zero if and only if

the random variables are independent. Maximal information is Shannon entropy ob-

tained when Y = X . In the event that the random variable X is a gene on a given

loci with the alleles A1,A2, . . . ,Ak and probability distribution p = (p1, p2, . . . , pk), then

Shannon entropy of the gene X is the same as Shannon information index HS(p) =
−∑k

i=1 pi log pi. We will further call this measure of diversity Shannon diversity.

The Shannon information can be generalized to the f-information

I f (X ;Y ) = ∑
x,y

f
(

p(x,y)
p(x).p(y)

)
p(x).p(y), (5)

where f (t) is a convex function on the interval [0,∞), strictly convex at t = 1 with

f (1) = 0. For more details about f-information derived from the concept of f-divergence

see Vajda [12]. In case of f (t) = t log t, f-information I f (X ;Y ) reduces to Shannon in-

formation IS(X ;Y ). The f-information was first systematically studied by Zvárová [13]

who proved the representation of the maximal f-information and called it f-entropy. In

the case that the random variable X is a gene on a given loci with the alleles A1,A2, . . . ,Ak
and probability distribution p = (p1, p2, . . . , pk), then f-entropy of the gene X is

Hf (p) =
k

∑
i=1

p2
i f (1/pi)+ f (0)

k

∑
i=1

pi(1− pi). (6)

The f-entropy Hf (p) can be interpreted as an average unpredictability of the indi-

vidual alleles Ai of the gene X (Zvárová and Vajda, [16]). In this sense f-entropy Hf (p)
is a measure of genetic diversity depending on the distribution p. Hf (p) will be called

f-diversity if it moreover satisfies the following conditions:

– Hf (p) is non-negative,
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– Hf (p) reaches its minimal value in case of the monomorphism,

– Hf (p) reaches its maximal value in the case that p = uk is the uniform distribution,

– Hf (p) is symmetric function of p,

– Hf (p) is a concave function on the system of all probability distributions p.

f-diversity Hf (p) was first introduced into genetics by Zvárová [14] and discussed in

further detail in (Zvárová and Mazura [15]). We can see that Hf (p) is a sum of two ex-

pressions where the second one is none other than the well-known Gini-Simpson index

HGS(p) multiplied by the constant f (0). We will further call the Gini-Simpson index

Gini-Simpson diversity. In the paper (Zvárová [13]) it was proved that f-diversities can

be found among f-entropies satisfying the condition g(t) = ( f (t)− f (0))/t is a concave

function. Then the f-entropy Hf (p) of the gene X will reach its maximal value for uni-

form distribution of alleles p = uk. We can see that Gini-Simpson diversity HGS(p)
is the f-diversity with f (t) = t − 1 for t > 1, otherwise f (t) = 0. Similarly, Shannon

diversity is the f-diversity with f (t) = t log t. Apart from the above mentioned mea-

sures of genetic diversity there are other measures of f-diversities e.g. α-order entropy

of Havrda-Charvát (Havrda, Charvát [4]) further called α-order diversity of Havrda-
Charvát

HH-Ch(p) =
1

2α−1 −1

(
1−

k

∑
i=1

pα
i

)
, (7)

with f (t) = 1/(2α−1 − 1)t(1 − t1−α), where 0 < α < 2,α �= 1. As proved by Koc-

manová and Zvárová [7] paired Shannon entropy

HPS(p) = −
k

∑
i=1

pi log pi −
k

∑
i=1

(1− pi) log(1− pi), (8)

is the measure of f-diversity with f (t) = t2 log t + t(1− t) log(t −1) for 1 < t < ∞ and

f (t) = 0 for 0 ≤ t ≤ 1.

The third f-diversity Number of Alleles (often used in biology under the name

Species Count) is

HNA(p) = k−1. (9)

It is also f-diversity with f (t) = t(t −1) (Horáček and Zvárová [5]) and simultaneously

it belongs to the class of power α-diversities

Hα(p) =

⎧⎪⎨
⎪⎩

1
α−1

(
1−∑k

i=1 pα
i
)

for 0 < α < 2,α �= 1,

∑k
i=1 χ(0,1>(pi)−1 for α = 0,

−∑k
i=1 pi log pi for α = 1.

(10)

Diversity Hα(p) is, up to a multiplying constant, equal to Havrda-Charvát diversity

HH-Ch(p).
In this framework of information theory we have introduced the concept of f-diversity

and showed several measures of f-diversity used in biology and medicine which we call

biodiversities.
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3 Measures of rarity, self and marginal f-diversity

In the case that a random variable X is a gene on a given loci with alleles A1, . . . ,Ak
and a probability distribution p = (p1, . . . , pk) then according to Patil and Tailie [10]

the rarity of allele Ai depends only on the numerical value of pi. Denoting the rarity of

an allele Ai by R(pi) the diversity index associated with the measure of rarity R is its

average rarity calculated as
k

∑
i=1

piR(pi). (11)

Three widely used indexes of ecological diversity are:

Number of Alleles (Number of Alleles diversity)

HNA = k−1 with R(pi) = (1− pi)/pi, (12)

Gini-Simpson index (Gini-Simpson diversity)

HGS(p) =
k

∑
i=1

pi(1− pi) with R(pi) = 1− pi (13)

and Shannon index (Shannon diversity)

HS(p) = −
k

∑
i=1

pi log pi with R(pi) = − log pi. (14)

These three indexes of diversity belong to the family of diversity indexes of order β
(Patil and Tailie [10]) defined as

Ri(pi) =

{
(1− pβ

i )/β if β ≥−1,β �= 0,

− log pi if β = 0,
(15)

where for β = 0 we receive Shannon diversity, for β = 1 Gini-Simpson diversity and

for β = −1 Number of Alleles diversity. As it was shown above, all three indexes of

diversity belong to the family of f-diversity.

Let us present the new concept of self f-diversity that is a generalization of the rarity

introduced by Patil and Tailie [10]. Self f-diversity of the j-th component ( j-th allele)

is

R f , j(p) = p j f (1/p j)+ f (0)(1− p j). (16)

Then it can be proved that f-diversity

Hf (p) =
k

∑
i=1

pi (pi f (1/pi)+ f (0)(1− pi)) (17)

=
k

∑
i=1

R f ,i(p). (18)
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Self f-diversity R f ,i(p) shows the additive influence of the probability pi on the value

of f-diversity.

For the often used Shannon diversity the Shannon self diversity is equal to

RS, j(p) = − log(p j) (19)

also known in information theory as self information. Similarly, for Gini-Simpson di-

versity the Gini-Simpson self diversity is equal to

RGS, j(p) = 1− p j. (20)

Another perspective on the impact of the j-th allele comes if do not distinguish

among other alleles. In this case we formally work with two alleles (dichotomy) with

probabilities p j and 1− p j. Then marginal f-diversity of the j-th component is defined

as

Hf , j(p) = p2
j f (1/p j)+(1− p j) f (1/(1− p j))+2 f (0)p j(1− p j). (21)

We shall further introduce several propositions about f-diversities and marginal f-

diversities.

Proposition 1. Let us have two one-dimensional probability distributions p and q such
that qr = 1− p j for some j,r. Then

HS, j(p) = HS,r(q). (22)

For f (t) = t log t we obtain Shannon marginal f-diversity as

HS, j(p) = −p j log p j − (1− p j) log(1− p j). (23)

Proposition 2. For pi > 0 Shannon marginal diversity is positive, i.e.

HS, j(p) > 0 (24)

Proposition 3. Paired Shannon diversity HPS(p) is the sum of Shannon marginal di-
versities HS, j(p) for all components of p:

HPS(p) =
k

∑
j=1

HS, j(p). (25)

Proposition 4. Paired Shannon marginal diversity of the j-th component is equal to
Shannon marginal diversity multiplied by 2:

HSP, j(p) = 2HS, j(p) (26)

Proposition 5. (Monotony) If 0 < p j < pr < 1/2 then the Shannon marginal diversity
of the j-th component HS, j(p) is smaller than Shannon marginal diversity of the r-th
component HS,r(p), i.e.

HS, j(p) < HS,r(p). (27)
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Proposition 6. Let pi j > 0, j = 1, . . . ,ni, i = 1, . . . ,k and ∑k
i=1 ∑ni

j=1 pi j = 1. Let us
denote

pi = (pi1, . . . , pi,ni),
p = (p1, . . . , pk),

pi+ =
ni

∑
j=1

pi j,

p+ = (p1+, . . . , pk+).

Then

HS(p) = HS(p+)+
k

∑
i=1

piHS(pi) (28)

Next preposition is a special case of the Proposition 6.

Proposition 7.

HS(p) = HS, j(p)+(1− p j)HS((p1, . . . , p j−1, p j+1, . . . , pk)/(1− p j)) (29)

4 Sample estimates of Gini-Simpson and Shannon diversities

Let us have a random sample of the size n of diploid individuals. Let us denote for

paired loci of a gene X the number of observed alleles Ai as Ni for i = 1, . . . ,k from a

total number of observed alleles N = 2n. Then the relative frequency p̂i = Ni/N is an

unbiased estimate of the probability pi of the occurrence of the allele Ai, i = 1,2, . . . ,k.

We denote p̂ = (p̂1, . . . , p̂k) the vector of relative frequencies p̂i and p = (p1, . . . , pk)
corresponding probability distribution.

The sample estimate of Gini-Simpson diversity is then

HGS(p̂) = 1−
k

∑
i=1

p̂2
i . (30)

As shown in a paper (Nei and Roychoudhury [9]) this naive estimate is not the

unbiased estimate of the Gini-Simpson diversity, because its mean value E (HGS(p̂)) is

equal to ((2n− 1)/2n)HGS(p). They therefore proposed an unbiased estimate H∗
GS(p̂)

as

H∗
GS(p̂) =

2n
2n−1

(
1−

k

∑
i=1

p̂2
i

)
, (31)

where E (H∗
GS(p̂)) = HGS(p).

In the estimated variance published in a paper (Chakraborty and Rao [2]) a small

misprint was found that was corrected in Kocmanová and Zvárová [7]. The variance of
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the unbiased estimate H∗
GS(p̂) is then

Var (H∗
GS(p̂)) =

4(n−1)
n(2n−1)

⎛
⎝ k

∑
i=1

p3
i −

(
k

∑
i=1

p2
i

)2
⎞
⎠

+
1

n(2n−1)

k

∑
i=1

p2
i

(
1−

k

∑
i=1

p2
i

)
.

(32)

The naive sample estimate of the Shannon diversity HS(p) is

HS(p̂) = −
k

∑
i=1

p̂i log p̂i. (33)

However, the naive Shannon diversity estimators such as HS(p̂), in which p is simply

replaced by p̂ are always biased and they deviate from the true value of the Shannon di-

versity not only randomly but also systematically. It should be emphasized that an ideal

estimator does not exist. The paper (Bonachela, Hinrichsen and Muňos [1]) discusses

different Shannon diversity estimators. For the purpose of this paper we stay with the

naive sample estimate of Shannon diversity given by (33). The estimate HS(p̂) is not

unbiased and its mean value can be approximated by

E (HS(p̂)) .= HS(p)− k−1

4n
(34)

and its variance can be approximated by

Var (HS(p̂)) .=
1

2n

⎛
⎝ k

∑
i=1

pi (log pi)
2 −

(
k

∑
i=1

pi log pi

)2
⎞
⎠+

k−1

2n2
, (35)

see Hutcheson [6].

Gini-Simpson and Shannon diversities have been used in a number of studies for

measuring genetic diversity. However, their numerical values are not influenced by al-

leles with small probabilities of occurrence. Therefore, even in the event that there are

many alleles in the population, but only a small number of alleles are prevailing and

others are very rare, Gini-Simpson and Shannon diversities are small. Therefore the

Number of Alleles diversity remains the simple important measure of genetic diversity.

We will show sample behaviour of Shannon, Gini-Simpson and Number of Alle-

les diversities, as well as corresponding self and marginal diversities, in the following

section.

5 Stochastic Modeling of Number of Alleles, Gini-Simpson and
Shannon diversities and corresponding self and marginal
diversities

Let us consider the following example. In the sample of n=97 patients suffering with

Alzheimer’s disease we examined the distribution of alleles e1, e2 and e3 of the gene
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ApoE. In the total number N = 194 of examined alleles, the allele e1 occurred in 27

cases, the allele e2 in 67 cases and the allele e3 in 100 cases. Therefore the sample

estimates of the probabilities of the alleles e1, e2 and e3 are given by corresponding

relative frequencies p1 = 27/194, p2 = 67/194 and p3 = 100/194. In the case that

we will consider the relative frequencies as the real probabilities of the alleles in the

population, we can simulate the behaviour of sample estimates of different forms of

diversities for Number of Alleles, Gini-Simpson and Shannon types of diversities.

Table 1 displays simulations of means and standard deviations of the following es-

timates of diversities Number of Alleles, Gini-Simpson, Gini-Simpson unbiased, Shan-

non and Shannon unbiased for N=2n=10, 50, 100 and 500. We generated 1000 random

samples for mean and standard deviation estimates of each diversity.

Table 1. Behaviour of several sample estimates of Number of Alleles, Gini-Simpson and Shannon

diversities

Simulations Theoretical values

Diversity N mean SD mean SD of est. Asympt. SD of est.

NumberOfAllels 10 1.757 0.432 2.000

GiniSimpson 10 0.535 0.097 0.596 0.083

GiniSimpson Unbiased 10 0.595 0.108 0.596 0.107 0.083

Shannon 10 0.868 0.176 0.983 0.092

Shannon Unbiased 10 0.968 0.176 0.983

NumberOfAllels 50 2.000 0.020 2.000

GiniSimpson 50 0.583 0.039 0.596 0.037

GiniSimpson Unbiased 50 0.595 0.040 0.596 0.040 0.037

Shannon 50 0.962 0.066 0.983 0.059 0.055

Shannon Unbiased 50 0.982 0.066 0.983 0.055

NumberOfAllels 100 2.000 0.000 2.000

GiniSimpson 100 0.590 0.027 0.596 0.026

GiniSimpson Unbiased 100 0.596 0.027 0.596 0.027 0.026

Shannon 100 0.973 0.045 0.983 0.043 0.041

Shannon Unbiased 100 0.983 0.045 0.983 0.041

NumberOfAllels 500 2.000 0.000 2.000

GiniSimpson 500 0.594 0.012 0.596 0.012

GiniSimpson Unbiased 500 0.596 0.012 0.596 0.012 0.012

Shannon 500 0.981 0.020 0.983 0.020 0.019

Shannon Unbiased 500 0.983 0.020 0.983 0.019

We can see in Table 1 that Gini-Simpson and Shannon diversity unbiased estimates

are better than corresponding naive estimates for small sample sizes n.

We furthermore display mean values of naive estimates of self and marginal diver-

sities for Number of Alleles type diversities (Table 2), Gini-Simpson type diversities

(Table 3) and Shannon type diversities (Table 4).
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Fig. 1. Pairs of graphs in each row of the figure display simulated means of self and marginal

diversities. In the upper row are Number of Alleles type diversities, in the row are Gini-Simpson

type diversities and in the lower row are Shannon type diversities. In each graph the symbols

◦,�,+ denote the corresponding diversity derived from probabilities p1, p2, p3.
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Table 2. Number of Alleles self and marginal diversities

Self diversity Marginal diversity

Probability Theor. N=10 N=50 N=100 N=500 Theor. N=10 N=50 N=100 N=500

p1 = 27/194 6.19 4.59 7.48 6.74 6.28 1.00 0.77 1.00 1.00 1.00

p2 = 67/194 1.90 2.58 2.03 1.95 1.91 1.00 0.99 1.00 1.00 1.00

p3 = 100/194 0.94 1.19 0.97 0.96 0.94 1.00 1.00 1.00 1.00 1.00

Table 3. Gini-Simpson self and marginal diversities

Self diversity Marginal diversity

Probability Theor. N=10 N=50 N=100 N=500 Theor. N=10 N=50 N=100 N=500

p1 = 27/194 0.86 0.63 0.86 0.86 0.86 0.24 0.21 0.23 0.24 0.24

p2 = 67/194 0.65 0.64 0.66 0.65 0.65 0.45 0.41 0.44 0.45 0.45

p3 = 100/194 0.48 0.48 0.48 0.48 0.48 0.50 0.45 0.49 0.49 0.50

Table 4. Shannon self and marginal diversities

Self diversity Marginal diversity

Probability Theor. N=10 N=50 N=100 N=500 Theor. N=10 N=50 N=100 N=500

p1 = 27/194 1.97 1.42 2.04 2.01 1.98 0.40 0.34 0.39 0.40 0.40

p2 = 67/194 1.06 1.14 1.09 1.07 1.07 0.64 0.59 0.63 0.64 0.64

p3 = 100/194 0.66 0.71 0.67 0.67 0.66 0.69 0.64 0.68 0.69 0.69

We can see (Fig. 1) that for small sample sizes the estimates of self diversity and

marginal diversity of the Number of Alleles are worse then estimates for Gini-Simpson

and Shannon type diversities.

References

1. Bonachela, J.A., Hinrichsen, H., Munoz, M.A.: Entropy estimates of small data sets. Journal

of Physics A: Mathematical and Theoretical 41 (2009) 1–11

2. Chakraborty, R., Rao, C.R.: Measurement of genetic variation for evolutionary studies. Sta-

tistical and Medical Sciences. Elsevier Science Publ (1991) 271–316

3. Gini, C.: Variabilità e Mutabilità. Studi Economico-Giuridici della R. Univ. di Cagliari. 3
(1912) Part 2 80

4. Havrda, S., Charvát,F.: Quantification methods of classification processes: Concept of struc-

tural α-entropy. Kybernetika 3 (1967) 95–100
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Abstract. The theory of evolution and ecology are very important components
of theoretical biology. The contribution presents some links between them that
emerges on the level of mathematical models. It introduces replicator equations
(ordinary differential equations modeling natural selection) and shows their equiv-
alence with the Lotka-Volterra equations of population dynamics and their con-
nection to the game theory. It mentions two alternative models of selection as
well.
The contribution can serve as an introductory text on the subject and a basic
source of references.

1 Introduction

John Maynard Smith and George Price published a pioneering paper on logic of animal
conflicts in Nature, 1973 [13]. They aimed to model mathematically some aspects of
biological evolution, in particular, the natural selection perceived as a mutual contest
of non-intelligent participants that are not able to evaluate information on contenders.
Maynard Smith and Price adopted concepts of game theory for the purpose.

Similar ideas were formulated in terms of ordinary differential equations by Peter
Taylor and Leo Jonker in 1978 [15]. The paper met no reception until 1981 when Peter
Schuster and Karl Sigmund independently rediscovered the same equation [11] and
applied them to point out a mistake appearing in a famous book by Richard Dawkins
[2].

The combination of differential equations and game theory proved to be very fruit-
ful. Recently, it has been explored in monographs in various ways, e.g. [12], [8], [16],
[3], [14] and it reaches applications not only in evolutionary biology but also in eco-
nomics, psychology, and decision theory. Indeed, the theory admits applications for
describing any conflict with incomplete or even none information, hence, it allows one
to understand behavior of complex and complicated systems (or to get some insight, at
least); community ecology represents an important example.

The present article is not intended to be a comprehensive text on evolutionary dy-
namics. It is meant to be a mere introduction to the subject and to allow a reader to get
an impression of it. The book [8] was utilized as the main source for the article. The
subsequent section introduces a dynamical model of the deterministic part of biological
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evolution, that is, of the natural selection. Then, the main result (Theorem 3) shows that,
under some assumptions, the model presented is equivalent to the fundamental model
of population ecology. Section 3 goes back to game theory and demonstrates how the
“static” results obtained by it correspond to “dynamical” ones yielded by the qualita-
tive theory of differential equations. Moreover, Theorem 6 suggest that the differential
equations under consideration may play a fundamental role in theoretical biology. This
“strong assertion” is weakened in the next section that presents some alternative models
of the selection.

Sufficient preliminaries to understand the text are calculus and linear algebra as
taught in university courses. Some knowledge on qualitative theory of ordinary differ-
ential equations might be useful as well.

The symbols used are standard. To refresh, R, R+ and R̄+ denote set of reals, of pos-
itive reals and of non-negative reals, respectively. Vectors are denoted by bold symbols,
their entries by symbols in italic and indexed by subscripts, i.e the vector x contains the
entries xi. Sometimes, it is useful to denote vector entries by a vector symbol in paren-
theses supplemented by a subscript, i.e. xi = (x)i. Vector ek is the k-th vector of standard
basis (all of its entries equal to zero with the exception of the k-th which equals one,
(ek) j = δ jk, where δ jk denotes the Kronecker symbol), symbol 1 denotes the vector with
all of entries equal to one. A support of n-dimensional vector x is the set of subscripts
such that corresponding entries differ from zero,

suppx = {i ∈ {1,2, . . . ,n} : xi �= 0} .

Matrices are denoted by sans serif font, their entries by italic and indexed by double
subscripts; the matrix A possesses the entry ai j in the i-th row and in the j-th column.
The symbols E and O denote the unity and the zero matrices, respectively. The ma-
trix multiplication is implicit, (AB stands for the product of matrices A and B). Vectors
appearing in formulas including matrices are considered to be column ones. The trans-
pose of a matrix is denoted by T, symbol ◦ denotes the Hadamard product of matrices
with equal shape; A◦B is a matrix with the entries ai jbi j in the i-th row and in the j-th
column.

The symbols Sn, S◦n and S∂
n denote the n-dimensional probability simplex, its interior

and its boundary, respectively; that is

Sn =
{
(x1,x2, . . . ,xn) ∈ R̄

n
+ : x1 + x2 + · · ·+ xn = 1

}
=

{
x ∈ R̄

n
+ : 1Tx = 1

}
,

S◦n =
{

x ∈ R
n
+ : 1Tx = 1

}
, S∂

n = Sn � S◦n.

2 Replicator equation

The notion of evolutionary stability relies upon implicit dynamical considerations. In
certain situations, the underlying dynamic can be modeled by a differential equation on
the simplex Sn. In this section, we introduce considerations and assumptions leading to
equations describing the evolution of the frequencies of traits in a population. A partic-
ular case of this equation can be transformed to the Lotka-Volterra equations, i.e. to the
standard model of population dynamics. Hence, from a mathematical point of view, the
natural selection is the same process as ecology.
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2.1 Derivation/construction of the equation

Let us consider a population (biological community in a broad sense) of some individ-
uals which is split up into several “types”. The individuals “produce” offspring of the
same “type” (species, phenotypes, genotypes, traits etc.). The bounds of this process
are in a sense limited, i.e. the number of individuals cannot be either infinite nor “too
great”. That is why the “excessive” individuals die or are not even born. Each of the
subpopulations of the same type of individuals may impact the particular surroundings
or conditions for the remaining sub-populations.

For the described situation, we can apply a basic tenet of Darwinism: the subpopula-
tions with greater fitness will survive and increase and the ones with smaller fitness will
decline and die out. This statement suggest that the fitness of a sub-population is not a
self-existent value, but is determined by fitnesses of the remaining sub-populations. A
more precise formulation of the tenet is that surviving and increasing sub-populations
are the ones with the fitness greater than a kind of “overall fitness”, e.g. the average
fitness of the sub-populations.

The survival and increase of a subpopulation results in an increase of its magnitude
or abundance. This does not mean that the prosperous sub-populations are the ones with
increasing size. The size of a non-prosperous subpopulation can increase but increments
of prosperous ones are greater. Thus the size of a subpopulation itself is not able to
characterize the prosperity or fitness of a subpopulation. A more appropriate indicator
is the relative abundance of subpopulation, the fraction of the subpopulation abundance
in the whole population. Now, we can reformulate the considerations provided in the
following way: a change of the relative frequency of sub-population is proportional to
difference of its fitness and an overall fitness.

The current conclusion can be expressed in mathematical terms. Therefore, let us
introduce the notation

xi – relative frequency of the i-th sub-population,
fi – fitness of the i-th sub-population;

having population of total size N split into n different types of subpopulations and size
(abundance) of the i-th sub-population being Ni, we can write

xi =
Ni
N

, i = 1,2, . . . ,n,
n

∑
i=1

Ni = N, hence
n

∑
i=1

xi = 1.

The overall fitness can be expressed as the average of single fitnesses weighted by
the relative frequencies, i.e.

f̄ =
n

∑
j=1

x j f j .

We aim to describe a dynamics of the process under consideration. Therefore we
consider the single relative frequencies to be functions of time, xi = xi(t), i = 1,2, . . . ,n.
The fitness of one subpopulation depends on presence of subpopulations that stimulate
or reduce its fitness. It may also be impacted by its size itself as the size of subpopulation
may determine whether intraspecific competition or cooperation appears. The separate
fitnesses are functions of presence constituent sub-populations, fi = fi(x1,x2, . . . ,xn),
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consequently. Thus, we obtain the following “system of equations”

time change xi ∼ fi(x1,x2, . . . ,xn) −
n

∑
j=1

x j f j(x1,x2, . . . ,xn), i = 1,2, . . . ,n.

Now, we must specify the proportionateness “∼” and “time change”. We choose the
direct proportion with positive rate c and the relative change of relative frequency, i.e.
time derivative over instant relative frequency. The previous “system of equations” ac-
quires the form

x′i
xi

= c

(
fi(x1,x2, . . . ,xn)−

n

∑
j=1

x j f j(x1,x2, . . . ,xn)

)
, i = 1,2, . . . ,n,

or the explicit and more concise one

x′i = cxi

(
fi(x)−

n

∑
j=1

x j f j(x)

)
, i = 1,2, . . . ,n.

The time unit can be chosen such that the rate of proportionality c equals one. Finally,
we obtain the general replicator equation

x′i = xi

(
fi(x)−

n

∑
j=1

x j f j(x)

)
, i = 1,2, . . . ,n. (1)

The equation (1) represents an autonomous system of n ordinary differential equations
which can be rewritten in the form x′i = xi(ei − x)T f (x), i = 1,2, . . . ,n and then in the
form of one vector equation

x′ = x◦ ((E− x1T) f (x)
)
.

2.2 Basic properties of replicator equation solutions

From now on, we will assume that the equation (1) with the initial condition such that
x1(0)+x2(0)+ · · ·+xn(0) = 1 possesses a unique solution. This property is guaranteed,
e.g., if all of the functions fi, i = 1,2, . . . ,n are continuously differentiable. Let us show
several simple properties of the equation (1).

Lemma 1. Let the solution x of the equation (1) satisfy the initial condition

x1(0)+ x2(0)+ · · ·+ xn(0) = 1,

i.e. 1Tx(0) = 1. Then

x1(t)+ x2(t)+ · · ·+ xn(t) = 1 for all t ≥ 0.
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Proof. Let x be the solution of the equation (1). Denote S = x1 + x2 + · · ·+ xn. Then

S′ =
n

∑
i=1

xi

(
fi(x)−

n

∑
j=1

x j f j(x)

)
= f̄ (x)−S f̄ (x),

which is the linear equation for the unknown function S. Its unique solution is

S(t) = 1 +
(
S(0)−1

)
e
−

t∫
0

f̄ (x(τ))dτ
.

Hence, S(0) = 1 implies S(t) = 1 for all t ≥ 0. �

Lemma 2. If there exists a subscript i ∈ {1,2, . . . ,n} such that xi(0) = 0 then xi(t) = 0
for all t ≥ 0.

Proof. Let x be the solution of the equation (1). The function xi(t)≡ 0 solves the scalar
equation.

x′i = xi
(

fi(x)− f̄ (x)
)
.

Now, the statement follows from the assumed uniqueness of the system (1) solution. �

The lemmas 1 and 2 state that the n-dimensional simplex Sn, its boundary S∂
n , and,

as a consequence of the assumed uniqueness of solution, its interior S◦n are invariant
sets of the system (1). Differently speaking, the replicator equation (1) models evolution
which does not change the number of the subpopulation. That is, a subpopulation which
is not present at the beginning cannot appear during evolution and a sub-population
present at the beginning cannot disappear in a finite time. Of course, the lemmas do not
imply non-existence of a component of solution xi of the system (1) such that xi(0) > 0,
lim
t→∞

x(t) = 0. A subpopulation can die out during “long time”.
From a biological perspective, the replicator equation describes the natural selec-

tion, i.e. the deterministic part of the biological evolution. Mutations and additional
stochastic processes forming the evolution are not included into the model.

Lemma 3. Let Ψ : Sn →R be a continuous function. Put gi = fi +Ψ ∀i∈ {1,2, . . . ,n}.
Then x solves the equation (1) if and only if it solves the equation

x′i = xi

(
gi(x)−

n

∑
j=1

x jg j(x)

)
, i = 1,2, . . . ,n

as well.

Proof.

x′i = xi

(
fi(x)−

n

∑
j=1

x j f j(x)

)
= xi

(
fi(x)+Ψ(x)−

n

∑
j=1

x j f j(x)−Ψ(x)
n

∑
j=1

x j

)
=

= xi

(
gi(x)−

n

∑
j=1

x j
(

f j(x)+Ψ(x)
))

= xi

(
gi(x)−

n

∑
j=1

x jg j(x)

)
. �
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The equation appearing in Lemma 3 possesses the same form as the replicator equa-
tion (1). Consequently, the functions gi represent fitnesses of subpopulations as well.
Lemma 3 states that the addition of a constant to the fitnesses of sub-population does
not influence the evolution of their relative frequencies. Hence, the fitnesses can be
chosen in the way such that average fitness equals zero. That is, we need not think of
fitnesses but of deviations from the overall fitness.

Theorem 1 (Hofbauer et al. [7], Zeeman [17]). Let there exist a point x̂ ∈ Sn and its
neighborhood U ⊆ R

n such that

n

∑
i=1

x̂i fi(x) > f̄ (x) for all x ∈ Sn ∩ (U �{x̂}) . (2)

Then x̂ is the asymptotically stable equilibrium of the system (1).

Proof. The neighborhood U can be taken such that supp x̂ = suppx holds for each point
x ∈ Sn ∩U . The Jensen inequality1 implies that the following holds

∑
i∈supp x̂

x̂i ln
x̂i
xi

= ∑
i∈supp x̂

x̂i

(
− ln

xi
x̂i

)
≥− ln

(
∑

i∈supp x̂
x̂i

xi
x̂i

)
=

= − ln ∑
i∈supp x̂

xi = − ln1 = 0,

and the equality holds if and only if x = α x̂ for some constant α; since x ∈ Sn, x̂ ∈ Sn,
the constant α has to equal 1. Hence, the following holds

∑
i∈supp x̂

x̂i ln x̂i ≥ ∑
i∈supp x̂

x̂i lnxi, or ∏
i∈supp x̂

x̂x̂i
i ≥ ∏

i∈supp x̂
xx̂i

i ,

for all x ∈U ∩Sn. The equality holds for x = x̂.
Denote

V (x) = ∏
i∈supp x̂

x̂x̂i
i − ∏

i∈supp x̂
xx̂i

i , P(x) = ∏
i∈supp x̂

xx̂i
i .

Then
V (x̂) = 0, V (x) > 0 for x �= x̂, P(x) > 0 for x ∈U ∩Sn.

1 Let ϕ be differentiable strictly convex function defined on the interval I. Then all of the num-
bers ξ1,ξ2, . . . ,ξk ∈ I and all of the points p ∈ S◦k satisfy

ϕ

(
k
∑
ι=1

pι ξι

)
≤

k
∑
ι=1

pι ϕ(ξι ).

The equality holds if and only if ξ1 = ξ2 = · · · = ξk.
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Further, the assumption yields

d
dt P(x)
P(x)

=
d
dt

lnP(x) =
d
dt ∑

i∈supp x̂
x̂i lnxi = ∑

i∈supp x̂
x̂i

x′i
xi

=

= ∑
i∈supp x̂

x̂i
(

fi(x)− f̄ x
)

= ∑
i∈supp x̂

x̂i fi(x)− f̄ (x) ∑
i∈supp x̂

x̂i =

= ∑
i∈supp x̂

x̂i fi(x)− f̄ (x) > 0

and, consequently,

d
dt

P(x) > 0 which implies
d
dt

V (x) = − d
dt

P(x) < 0.

This means that the function V is the Lyapunov one of the equation (1) in the point x̂
and this point is uniformly asymptotically stable. �

Theorem 1 allows us to introduce the terminology: The point x̂ ∈ Sn satisfying the
equality (2) is called evolutionary stable state (with respect to the fitnesses f1, f2 . . . , fn).
If the relative frequencies of subpopulations reach this state they do not evolve further.
If the structure of population (i.e. relative frequencies, not the number of subpopulation)
“slightly deviates” from the evolutionary stable state it will return to the state x̂ again.
In this way, the evolutionary stable state may be interpreted as a formal expression of
the “frozen evolution” [4].

2.3 Equation with linear fitnesses

The replicator equation (1) with fitnesses fi expressed by linear homogeneous functions

fi(x1,x2, . . . ,xn) =
n

∑
k=1

aikxk, i = 1,2, . . . ,n

is of particular interest. In this case, the replicator equation is of the form

x′i = xi

(
n

∑
k=1

aikxk −
n

∑
j=1

n

∑
k=1

x ja jkxk

)
, i = 1,2, . . . ,n.

The coefficients ai j, i, j = 1,2, . . . ,n can be considered to be entries of a square n-order
matrix A. In this way, the fitnesses are defined by expressions fi(x) = (Ax)i and the
equation can be rewritten to the more concise form

x′i = xi
(
(Ax)i − xTAx

)
, i = 1,2, . . . ,n (3)

or
x′i = xi(ei − x)TAx, i = 1,2, . . . ,n.

Again, this system can be written in the form of one vector equation

x′ = x◦ ((E− x1T)Ax
)
.
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Lemma 4. The solution of the equation (3) does not change if a diagonal matrix is
added to the matrix A, if a constant vector is added to a row of the matrix A or if a
constant vector is added to a column of the matrix A.

Proof. Let c be an arbitrary n-dimensional vector. The statements follow from the
lemma 3; for the first part we put Ψ(x) = c ◦ x, for the second one we put Ψ (x) = x jc
for some subscript j ∈{1,2, . . . ,n}, and for the third one we putΨ (x)= (0,0, . . . ,0,cTx,
0, . . . ,0)T. �

Without loss of generality, we can assume that the diagonal of matrix A consists of
zeroes only, or that one of the rows or columns of the matrix A (e.g. the last one) is the
zero one.

In the case of fitnesses in the form of linear functions, the condition (2) can be
reformulated: the point x̂ ∈ Sn represents an evolutionary stable state if there is a neigh-
borhood U ⊆ R

n of it such that

x̂TAx > xTAx, for all x ∈ Sn ∩
(
U �{x}).

In fact, the equation (3) represents a system of n nonlinear equations with cubic
nonlinearities. The most important theorem of the present section states that it can be
transformed into the system of n−1 equations with quadratic nonlinearities:

Theorem 2 (Hofbauer [5]). Put bi j = an j −ai j, ri = ain −ann for i, j = 1,2, . . . ,n−1.
The transformation of the independent variable (of the time) and the transformation of
unknown functions defined by the equalities

τ =
t∫

0

xn(s)ds, y j =
x j

xn
, j = 1,2, . . . ,n−1

map the orbits of the replicator equation (3) initializing in the interior of the simplex S◦n
onto the orbits of the Lotka-Volterra system

dy j

dτ
= y j

(
r j −

n−1

∑
k=1

b jkyk

)
, j = 1,2, . . . ,n−1 (4)

initializing in the interior of the positive orthant R
n−1
+ .

Proof. The following holds
n−1
∑
j=1

y j =
1
xn

n−1
∑
j=1

x j =
1
xn

(1− xn) =
1
xn

−1. Subsequently,

xn =
1

1 +
n−1
∑
j=1

y j

and further xi =
yi

1 +
n−1
∑
j=1

y j

.

This means that the map y j =
x j

xn
, j = 1,2, . . . ,n−1 is a one-to-one map of the interior

of the simplex S◦n onto the interior of the n−1-dimensional orthant.
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By the lemmas 1 and 2, any solution x of the equation (3) satisfies

dτ
dt

= xn(t) > 0;

the transformation of the independent variable is an injection. Now, we have

dy j

dτ
=

d
x j

xn
dt

dt
dτ

=
x′jxn − x jx′n

x2
n

1
xn

=
1
x2

n

(
x′j − x j

x′n
xn

)
=

=
1
x2

n

(
x j
(
(Ax) j − xTAx

)− x j
(
(Ax)n − xTAx

))
=

=
x j

x2
n

(
(Ax) j − (Ax)n

)
=

x j

x2
n

(
n

∑
k=1

a jkxk −
n

∑
k=1

ankxk

)
=

=
x j

x2
n

n

∑
k=1

(
a jk −ank

)
xk =

x j

x2
n

(
n−1

∑
k=1

(
a jk −ank

)
xk +(a jn −ann)xn

)
=

=
x j

xn

(
a jn −ann −

n−1

∑
k=1

(
ank −a jk

) xk
xn

)
= y j

(
r j −

n−1

∑
k=1

b jkyk

)
. �

Theorem 2 reveals a link between evolution (natural selection) and ecology. The
validity of it justifies the choice of the relative change of relative frequencies of separate
sub-populations during the derivation (or the construction) of the replicator equation on
page 4.

Example: evolution of two subpopulations. Let n = 2, A =
(

a11 a12
a21 a22

)
. The equation

(4) is of the form
dy
dτ

= y
(
a12 −a22 − (a21 −a11)y

)
. The solution of this equation with

the initial condition y(0) = y0 > 0 is the function

y(τ) =
(a12 −a22)y0

(a21 −a11)y0 +
(
a12 −a22 − (a21 −a11)y0

)
e(a22−a12)τ .

Denote Q =
a22 −a12
a11 −a21

. The following holds

– if a12 −a22 > 0, a21 −a11 > 0, then lim
τ→∞

y(τ) = Q,
i.e. the both subpopulations survive;

– if a12 −a22 > 0 > a21 −a11, then lim
τ→∞

y(τ) = ∞,
i.e. the second subpopulation dies out;

– if a21 −a11 > 0 > a12 −a22, then lim
τ→∞

y(τ) = 0,
i.e. the first subpopulation dies out;
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– if a12 −a22 < 0, a21 −a11 < 0, then

lim
τ→∞

y(τ) =

⎧⎪⎨
⎪⎩

0, y0 < Q,

Q, y0 = Q,

∞, y0 > Q,

i.e. one of the subpopulations dies out; the initial conditions determine which one
of the subpopulations survives.

Example: Hawks and doves [8, p. 58]. John Maynard Smith has initiated a theory to
explain the high frequency of conventional contests. It takes the form of a though exper-
iment: suppose there are only two possible behavioral types: one escalates the conflict
until injury or the flight of the opponent settles the issue; the other sticks to displays and
retreats if the opponent escalates. These two types of behavior are usually described as
“hawks” and “doves”, although this is somewhat misleading. The conflicts, after all, are
supposed to take place within one species and not between two; furthermore, real doves
do escalate.

The contest may take place over a morsel of food, the boundary line between terri-
tories or a potential mate. The prize corresponds to a gain in fitness V , while an injury
reduces fitness by −C. Fitness here means simply reproductive success.

If two doves meet, they posture, glare at each other, swell up, change color etc. but
eventually, one of them retreats. The winner obtains V , the loser gets nothing, so that
the average increase in fitness, for a dove meeting another dove, is 1

2V . A dove meeting
a hawk flees and its fitness remains unchanged, while that of the hawk increases by V .
Finally, if a hawk meets a hawk, they escalate until one of the two gets knocked out.
The fitness of the winner is increased by V , that of the loser reduced by C, so that the
average increase in fitness is 1

2 (V −C). This is encapsulated in the matrix

A =
( 1

2 (V −C) V
0 1

2V

)
.

Now, adopting the notation from the previous example, we have

a12 −a22 =
V
2

, a21 −a11 =
C−V

2
, Q =

V
C−V

.

Subsequently, if V < C, then both behavioral types persist, if V > C the “hawk” tactic
prevails and the “dove” tactic dies out. The hawk-dove conflict can be simulated by
computer; the figures 1 and 2 introduce the Maple classic worksheets with solution of
the corresponding equation.

3 (Bi)matrix games

The replicator equation (3) models the evolution of a population split into n subpopu-
lations that mutually interact. The entries of matrix A characterize these interactions;
we can say e.g. that if ai j > 0 then the i-th sub-population “wins a contribution to its
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Fig. 1. Computer simulation of solution of replicator equation executed by Maple v. 9.5. The
classic worksheet shows the hawk-dove conflict with diminishing of the dove tactic.
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Fig. 2. Computer simulation of solution of replicator equation executed by Maple v. 9.5. The con-
tinuation of the classic worksheet from the figure 1 shows the hawk-dove conflict with persistence
of the two tactics.

fitness” during a conflict with the j-th subpopulation. The similar situation — conflict
between several participants — is usually studied by game theory. Therefore, this sec-
tion deals briefly with concepts of game theory and shows their relations to replicator
equations.

3.1 Basic notions

Definition 1. The finite normal form a two-player game (bimatrix game) is a 4-tuple
G = (X ,Y,u,v), where X, Y are finite sets and the functions u, v map the X ×Y into R.

The sets X and Y are called sets of pure strategies of the first and of the second
player, respectively. The functions u and v are called payoff functions of the first player
and of the second one, respectively.
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Since the sets X and Y are finite, we can put X = {1,2, . . . ,n} and Y = {1,2, . . . ,m}.
Let us denote ai j = u(i, j), b ji = v(i, j),

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

b11 b12 . . . b1n
b21 b22 . . . b2n

...
...

. . .
...

bm1 bm2 . . . bmn

⎞
⎟⎟⎟⎠ .

Using this notation, we have

u(i, j) = ai j = ei
TAe j, v(i, j) = b ji = e j

TBei. (5)

A bimatrix game is completely determined by the matrices A and B called payoff ma-
trices. A game can be represented by the pair (A,B) and it can be described by the
table

player 2
1 2 . . . m

1 b11
a11

b21
a12

. . . bm1
a1m

pl
ay

er
1 2 b12

a21

b22
a22

. . . bm2
a2m

...
...

...
. . .

...

n b1n
an1

b2n
an2

. . . bmn
anm .

Definition 2. Probability extension of a bimatrix game G = (X ,Y,u,v) = (A,B) is a 4-
tuple G ∗ = (X∗,Y ∗,u∗,v∗), where X∗ = Sn, Y ∗ = Sm and u∗, v∗ are functions X∗×Y ∗ →
R defined by the following equalities

u∗(x,y) = xTAy, v∗(x,y) = yTBx. (6)

The maps ϕ : X → X∗ and ψ : Y →Y ∗ defined by the equalities ϕ(i) = ei, ψ( j) = e j
are injective. That is why we can think of the sets X and Y as subsets of the sets X∗ and
Y ∗, respectively. Comparing the formulas (5) and (6), we can see that the functions u
and. v are restrictions of the maps u∗ and v∗ to the sets X and Y . The elements of the
sets X∗ and Y ∗ are called mixed strategies.

Definition 3. The mixed strategy x̄ ∈ X∗ is called the best reply to the strategy y ∈Y ∗ if

u∗(x̄,y) = x̄TAy ≥ xTAy = u∗(x,y)

for all strategies x ∈ X∗. In a similar way, the mixed strategy ȳ ∈ Y ∗ is called the best
reply to the strategy x ∈ X∗ if

v∗(x, ȳ) = ȳTBx ≥ yTBx = v∗(x,y)
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for all strategies y ∈ Y ∗. The pair of strategies (x̄, ȳ) ∈ X∗ ×Y ∗ is called the Nash
equilibrium if x̄ is the best reply to ȳ and in the same time ȳ is the best reply to x̄, i.e.

x̄TAȳ ≥ xTAȳ, ȳTBx̄ ≥ yTBx̄ for all x ∈ X∗, y ∈ Y ∗.

A player adopting the equilibrium strategy is sure that his payoff cannot decrease in
the case that his opponent adopts a strategy different from the equilibrium one. In this
way, the equilibrium strategy is the most profitable for the both of the players.

Definition 4. The bimatrix game G = (X ,Y,u,v) is called symmetric if X = Y and
u(i, j) = v( j, i) for all of the pure strategies i, j ∈ X. The symmetric game can be written
down in a brief form G = (X ,u).

The symmetric game satisfies the relation ai j = u(i, j) = v( j, i) = bi j, hence A = B.
That is, a symmetric game is determined by the matrix A therefore it used to be called
the matrix game.

The pair of strategies (x̄, ȳ) ∈ X∗2 of a matrix game is the Nash equilibrium if the
following holds

x̄TAȳ ≥ xTAȳ, ȳTAx̄ ≥ yTAx̄, for all x,y ∈ X∗.

The strategy x̄ ∈ X∗ of a matrix game is called symmetric Nash equilibrium if the
pair (x̄, x̄) is equilibrium, i.e. if the following holds

x̄TAx̄ ≥ xTAx̄, for all x ∈ X∗.

3.2 Equilibria of symmetric matrix game and stationary points of replicator
equation (3)

Conflict within a structured population can be modeled by games or by a replicator
equation. The fundamental concept in the game theory is that of Nash equilibrium and
the one in the qualitative theory is that of stationary point. This section shows that
Nash equilibria of a matrix game corresponds to stationary solutions of the respective
replicator equation.

Theorem 3. Let G be symmetric finite game defined by the matrix A. The mixed strat-
egy x̄ is symmetric Nash equilibrium if and only if

ei
TAx̄ ≤ x̄TAx̄ for all i �∈ supp x̄ (7)

and
ei

TAx̄ = x̄TAx̄ for all i ∈ supp x̄. (8)

Proof. Let x̄ be an equilibrium strategy. Then

ei
TAx̄ ≤ x̄TAx̄ for all i ∈ {1,2, . . . ,n}.
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Let us suppose for contradiction that there exists k ∈ supp x̄ such that ek
TAx̄ < x̄TAx̄.

Then

x̄TAx̄ =
n

∑
i=1

x̄iei
TAx̄ = ∑

i∈supp x̄
x̄iei

TAx̄ = x̄kek
TAx̄ + ∑

i∈supp x̄�{k}
x̄iei

TAx̄ <

< x̄kx̄TAx̄ + ∑
i∈supp x̄�{k}

x̄ix̄TAx̄ =
n

∑
i=1

x̄ix̄TAx̄ = x̄TAx̄.

This contradiction proves the necessity of the conditions.
Let the conditions (7) and (8) hold. Then ei

TAx̄ ≤ x̄TAx̄ for all subscripts i ∈
{1,2, . . . ,n}. Now, if x ∈ X∗ is an arbitrary mixed strategy, then

xTAx̄ =
n

∑
i=1

xiei
TAx̄ ≤

n

∑
i=1

xix̄TAx̄ = x̄T
i Ax̄.

Hence, the note above the theorem states that x̄ is a symmetric equilibrium strategy. The
conditions are sufficient as well. �

Theorem 4 (Nachbar [10]).

(i) If x̄ is a symmetric equilibrium strategy for a matrix game defined by the matrix A
then x̄ is a stationary point of the autonomous differential equation system (3).

(ii) If x̂ = (x̂1, x̂2, . . . , x̂n)T ∈ X∗ is a stable stationary point of the system (3) then x̂ is a
symmetric equilibrium strategy for the matrix game defined by the matrix A.

Proof. (i) The proposition follows directly Theorem 3 and the fact that the conditions
(7) and (8) can be rewritten to the form

(ei − x̄)T Ax̄ ≤ 0 for all i �∈ supp x̄,

(ei − x̄)T Ax̄ = 0 for all i ∈ supp x̄.
(ii) Denote

Fi(x) = xi (ei − x)T Ax = xi

(
n

∑
k=1

aikxk −
n

∑
l=1

n

∑
k=1

alkxlxk

)
.

Then

∂Fi
∂x j

(x) =

= δi j

(
n

∑
k=1

aikxk −
n

∑
l=1

n

∑
k=1

alkxlxk

)
+ xi

(
ai j −

n

∑
k=1

a jkxk −
n

∑
l=1

al jxl

)
=

= δi j
(
ei

TAx− xTAx
)
+ xi

(
ai j − e j

TAx− xTAe j
)
.

Hence, the entries of variational matrix of the system (3) at the stationary point x̂
are

∂Fi
∂x j

(x̂) =

{
x̂i
(
ai j − e j

TAx̂− x̂TAe j
)
, x̂i �= 0,

δi j
(
ei

TAx̂− x̂TAx̂
)
, x̂i = 0.
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The eigenvalues of the variational matrix satisfy the equation

det
(

∂Fi

∂x j
(x̂)− δi jλ

)
= 0.

Let i satisfying x̂i = 0 be arbitrary. We expand the determinant by the i-th row:(
ei

TAx̂− x̂TAx̂−λ
) · (the respective algebraic complement).

This calculation yields that the number ei
TAx̂− x̂TAx̂ is an eigenvalue of the vari-

ational matrix for all i such that x̂i = 0. The assumed stability of the stationary
solution x̂ implies

ei
TAx̂− x̂TAx̂ ≤ 0 for any i such that x̂i = 0.

Moreover, the following holds

ei
TAx̂− x̂TAx̂ = 0 for all i such that x̂i �= 0,

because x̂ is the stationary solution of the system (3). Consequently,

ei
TAx̂− x̂TAx̂ ≤ 0 for all i ∈ {1,2, . . . ,n}.

Now, let x =
n
∑

i=1
xiei ∈ X∗ be an arbitrary mixed strategy. Then

xTAx̂ =
n

∑
i=1

xiei
TAx̂ ≤

n

∑
i=1

xix̂TAx̂ = x̂TAx̂
n

∑
i=1

xi = x̂TAx̂,

hence, x̂ is a symmetric equilibrium strategy. �

Converse statements do not hold:
(i) Each pure strategy ei is a stationary point of the system (3) but a pure strategy is

not a equilibrium one, in general.
(ii) E.g., let us consider the symmetric matrix game defined by the matrix

A =
(

1 0
0 0

)
.

Then the strategy x̄ = (0,1)T is a symmetric equilibrium since

(x,1− x)
(

1 0
0 0

)(
0
1

)
= 0 = (0,1)

(
1 0
0 0

)(
0
1

)
for any x ∈ [0,1]. The corresponding ordinary differential system is the following

x′ = x
[
(1,0)

(
1 0
0 0

)(
x
y

)
− (x,y)

(
1 0
0 0

)(
x
y

)]
= x(x− x2) = x2(1− x),

y′ = y
[
(0,1)

(
1 0
0 0

)(
x
y

)
− (x,y)

(
1 0
0 0

)(
x
y

)]
= y(−x2) = −x2y.
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The stationary points are (0,y), (1,0) for any y ∈ [0,1]. The variational matrix in a
stationary point (x,y) takes the form

J(x,y) =
(

2x−3x2 0
−2xy −x2

)
.

In particular,

J(0,1) =
(

0 0
0 0

)
.

The characteristic polynomial of this matrix possesses the double root λ = 0 which
means that the stationary solution is not stable.

3.3 Replicator equation for a bimatrix game

As it was mentioned in the introduction to this section, the replicator equation (3) rep-
resents an alternative description of a matrix game. Sub-populations correspond to pure
strategies and their fitnesses correspond to payoff functions. This observation suggests
that bimatrix games could be represented by differential equations as well. A paradig-
matic situation is Dawkins’s battle of sexes game; this game has motivated a seminal
paper [11]. This game models the interaction (either cooperation or contest) of males
and females endeavoring to put their genes into effect. The females are considered to
be the first player, their phenotypes (in a broad sense, e.g. behavior patterns) constitute
strategies. In a similar way we can think of males. The payoff ai j may be the number of
offspring of the female with the i-th phenotype and of the male with the j-th phenotype.

Considerations similar to the ones provided in the section 2 lead to the equations

x′i =xi
(
(Ay)i − xTAy

)
, i = 1,2, . . . ,n,

y′j =y j
(
(Bx) j − yTBx

)
, j = 1,2, . . . ,m,

(9)

or, in an equivalent form

x′i =xi(ei − x)TAy, i = 1,2, . . . ,n,
y′j =y j(e j − y)TBx, j = 1,2, . . . ,m.

Also, this system can be rewritten to the form of one vector equation(
x
y

)′
=

(
x
y

)
◦
(

O (E− x1T)A
(E− y1T)B O

)(
x
y

)
.

The system (9) possesses a unique solution, since the righthand sides are continuously
differentiable by all of the variables xi and y j. In a similar way as in Section 2, lemmas 1
and 2 we can demonstrate that the sets Sn×Sm and S◦n×S◦m are invariants for the system
(9). Moreover, we can show that the solution of the system (9) will not change after
addition of a constant vector to the diagonal or to a some row or column of the matrices
A and B; the proof repeats the arguments used in the proofs of the lemmas 3 and 4 in
the section 2.

136



Theorem 2 in the section 2 states that the cubic nonlinearities appearing in the repli-
cator equation (3) can be reduced to the quadratic ones. An analogy of this statement is
not known for the system (9). But at least, we are able to reduce the dimension of the
system (9).

Indeed, the invariantness of the set Sn ×Sm with respect to the system (9) implies

xn = 1−
n−1

∑
i=1

x j, ym = 1−
m−1

∑
j=1

y j

which yields

m

∑
j=1

ai jy j − xTAy =
m

∑
j=1

ai jy j −
n

∑
l=1

n

∑
j=1

xlal jy j =

=
m−1

∑
j=1

ai jy j + aim

(
1−

m−1

∑
j=1

y j

)
−

−
n

∑
l=1

xl

[
m−1

∑
j=1

al jy j + alm

(
1−

m−1

∑
j=1

y j

)]
=

=
m−1

∑
j=1

(ai j −aim)y j + aim−
n

∑
l=1

xl

[
m−1

∑
j=1

(al j −alm)y j + alm

]
=

=
m−1

∑
j=1

(ai j −aim)y j + aim −
n−1

∑
l=1

xl

[
m−1

∑
j=1

(al j −alm)y j + alm

]
−

−
(

1−
n−1

∑
l=1

xl

)[
m−1

∑
j=1

(an j −anm)y j + anm

]
=

=
m−1

∑
j=1

(ai j −aim)y j + aim −
m−1

∑
j=1

(an j −anm)y j −anm−

−
n−1

∑
l=1

xl

[
m−1

∑
j=1

(al j −alm −an j + anm)y j + alm −anm

]
=

=
m−1

∑
j=1

(ai j −aim −an j + anm)y j + aim −anm−

−
n−1

∑
l=1

xl

[
m−1

∑
j=1

(al j −alm −an j + anm)y j + alm −anm

]
=
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=
n−1

∑
l=1

m−1

∑
j=1

δil
[
(al j −alm −an j + anm)y j + alm −anm

]−
−

n−1

∑
l=1

m−1

∑
j=1

xl
[
(al j −alm −an j + anm)y j + alm −anm

]
=

=
n−1

∑
l=1

m−1

∑
j=1

(δil − xl)
[
(al j −alm −an j + anm)y j + alm −anm

]
.

Let us denote now

ãi j = ai j −aim −an j + anm, âi = anm −aim

for i = 1,2, . . . ,n−1, j = 1,2, . . . ,m−1 and

Ã =

⎛
⎜⎜⎜⎝

ã11 ã12 . . . ã1(m−1)
ã21 ã22 . . . ã2(m−1)

...
...

. . .
...

ã(n−1)1 ã(n−1)2 . . . ã(n−1)(m−1)

⎞
⎟⎟⎟⎠ , â =

⎛
⎜⎜⎜⎝

â1
â2
...

ân−1

⎞
⎟⎟⎟⎠ .

Analogous calculations imply

n

∑
i=1

b jixi − yTBx =
m−1

∑
j=1

n−1

∑
l=1

(δl j − y j)
[
(bl j −bln −bm j + bmn)xl + b jn −bmn

]
hence, the we can denote

b̃i j = bi j −bin −bm j + bmn, b̂ j = bmn −b jn

for i = 1,2, . . . ,n−1, j = 1,2, . . . ,m−1 and

B̃ =

⎛
⎜⎜⎜⎝

b̃11 b̃12 . . . b̃1(n−1)
b̃21 b̃22 . . . b̃2(n−1)

...
...

. . .
...

b̃(m−1)1 b̃(m−1)2 . . . b̃(m−1)(n−1)

⎞
⎟⎟⎟⎠ , b̂ =

⎛
⎜⎜⎜⎝

b̂1
b̂2
...

b̂n−1

⎞
⎟⎟⎟⎠ .

The consideration and calculations show that the (n + m)-dimensional system (9)
can be reduced to the (n + m−2)-dimensional system

x′i = xi(ei − x)T
(
Ãy− â

)
, i = 1,2, . . . ,n−1,

y′j = y j(e j − y)T
(
B̃x− b̂

)
, j = 1,2, . . . ,m−1.

(10)

Now, we adopt the notation x = (x1,x2, . . . ,xn−1), y = (y1,y2, . . . ,ym−1).
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Example: Conflict of two players with two strategies. Let n = m = 2,

A =
(

a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

Then the system of equations (10) takes the form

x′ = x(1− x)(α1y−α2),
y′ = y(1− y)(β1x−β2),

where α1 = a11 − a12 − a21 + a22, α2 = a22 − a12, β1 = b11 − b12 − b21 + b22, β2 =
b22 −b12. The phase space for this system is the set [0,1]× [0,1]. The system possesses
the stationary points (0,0), (0,1), (1,0), (1,1) corresponding to the pure strategies. If
further

α1 �= 0, 0 <
α2

α1
< 1, β1 �= 0, 0 <

β2

β1
< 1,

it possesses also the interior equilibrium(
β2
β1

,
α2
α1

)

corresponding to the mixed strategies. The matrix

J(x,y) =
(

(1−2x)(α1y−α2) α1x(1− x)
β1y(1− y) (1−2y)(β1x−β2)

)

is the variational matrix of the system, hence

J(0,0) =
(−α2 0

0 −β2

)
, J(0,1) =

(
α1 −α2 0

0 β2

)
,

J(1,0) =
(

α2 0
0 β1 −β2

)
, J(1,1) =

(
α2 −α1 0

0 β2 −β1

)
,

J
(

β2
β1

,
α2
α1

)
=

⎛
⎜⎜⎝

0
α1β2(β1 −β2)

β 2
1

α2β1(α1 −α2)
α2

1
0

⎞
⎟⎟⎠ .

Now we can see that the edge equilibria corresponding to the pure strategies are saddle
points or nodes, while an interior equilibrium (provided it exists) corresponding to the
mixed strategies is a saddle point or an unstable focus. Consequently, such a system
evolves to pure strategies; just one of the extended phenotype of a particular player
survives, and the other dies out.
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Example: The Battle of the Sexes [8, p. 114–115]. In many species, raising offspring
requires a considerable amount of time and energy. Each parent might attempt to reduce
its own share at the expense of the other. The outcome might depend on which sex is
in a position to desert first. Whenever fertilization is internal, for example, females risk
being deserted even before giving birth to the offspring. At an even more fundamental
level, the game is rigged against the female by the fact that they produce relatively few,
large gametes, whereas males produce many small gametes. Females are thereby much
more committed and can less afford to lose a child. Thus, males are in many cases in
a better position to desert. They can invest the corresponding gain in time and energy
into increasing their offspring with the help of new mates.

The female counterstrategy is “coyness”, i.e. the insistence upon a long engage-
ment period before copulation. Rather than undergoing a second costly engagement
(for which it might be too late in the mating season), males would do better to stay
faithfully at home and help raise their offspring. Roughly speaking, in a population of
coy females, males would have to be faithful. Among faithful males, however, it would
not pay a female to be coy: the long engagement period is an unnecessary cost. Thus, the
proportion of “fast” females would grow. But then “philandering” males will have their
chance and spread. Females, in that case, will do well to be coy. The argument thus runs
full circle. In order to model this through game theory, let us assume that there are two
types in the male population, namely “faithful” and “philandering” with frequencies x1
and x2, respectively, and two types in the female population, namely “coy” and “fast”
with frequencies y1 and y2, respectively. Let us suppose that the successful raising of
the offspring increases the fitness of both parents by V . The parental investment −2C
will be entirely borne by the female if the male deserts. Otherwise, it is shared equally
by both parents. A long engagement period represent a cost of −c to both parents.

Hence, the game can be represented by the following table:

female
coy fast

m
al

e faithful V −C− c
V −C− c

V −C
V −C

philanderer 0
0

V −2C
V .

The analysis of stationary states of corresponding replicator equation provided in the
previous example reveals that just one strategy (mating behavior pattern) of each sex
can persist.

Figures 3 and 4 show a computer simulation provided by Maple v. 9.5. The example
illustrates diminishing of the male “philanderer” and the female “fast” strategies.

3.4 Stationary points and invariant of replicator equation (9)

Section 3.2 shows that Nash equilibria of matrix game correspond to stationary solu-
tions of replicator equation (3). The analogous statement is true also for bimatrix games
and respective replicator equations. Moreover, replicator equation for a bimatrix game
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Fig. 3. Computer simulation of solution of replicator equation for bimatrix game provided by
Maple v. 9.5. In particular, the battle of sexes game is modeled.

may have an invariant (constant of motion, Hamiltonian); that is, in the area of theoret-
ical biology, replicator equations for bimatrix game may play a role similar to that of
equations of analytical mechanics in physics.

Theorem 5. The pair of mixed strategies (x̄, ȳ) ∈ Sn × Sm is the Nash equilibrium for
the bimatrix game defined by matrices A, B if and only if

(Aȳ)i = ei
TAȳ = x̄TAȳ for all i ∈ supp x̄,

(Aȳ)i = ei
TAȳ ≤ x̄TAȳ for all i �∈ supp x̄,

(Bx̄) j = e j
TBx̄ = ȳTBx̄ for all j ∈ supp ȳ,

(Bx̄) j = e j
TBx̄ ≤ ȳTBx̄ for all j �∈ supp ȳ.

Proof. We can repeat and slightly modify the arguments used in the proof of Theorem
3. �
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Fig. 4. Continuation of fig. 3

Corollary 1. If (x̄, ȳ) ∈ Sn × Sm is the Nash equilibrium for the bimatrix game (A,B)
then (x̄, ȳ) is a stationary point of the system (9).

Corollary 2. Let (x̄, ȳ) ∈ S◦n ×S◦m. Then the following statements are equivalent.

(i) (x̄, ȳ) is Nash equilibrium of the game (A,B).
(ii) (x̄, ȳ) is a stationary point of the system (9).

(iii) Aȳ = 1x̄TAȳ, Bx̄ = 1ȳTBx̄.
(iv) xTAȳ = x̄Aȳ, yTBx̄ = ȳBx̄ for all x ∈ Sn, y ∈ Sm.

Proof. The first implication is a particular case of Corollary 1.
(ii)⇒(iii): Let i be arbitrary. Then xi > 0, x̄i

(
(Aȳ)i − x̄TAȳ

)
= 0, hence

(Aȳ)i = x̄TAȳ.

In a similar way we can show that (Bx̄) j = ȳTBx̄.
(iii)⇒(iv): Let y ∈ Sm be arbitrary. Then

Bx̄ = 1ȳTBx̄
yTBx̄ = yT1ȳTBx̄
yTBx̄ = ȳTBx̄.

In a similar way we can show that xTAȳ = x̄Aȳ.
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(iv)⇒(i): This implication follows immediately the definition of Nash equilibrium.
�
Definition 5. Let (A,B) be a bimatrix game and assume that there exists matrices D
and vectors p, q such that

A = D+ 1qT, B = cDT + 1qT, (11)

that is
ai j = di j + q j, b ji = cdi j + pi

for some c �= 0. If c > 0 then (A,B) is called c-partnership game, if c < 0 then (A,B) is
called c-zero-sum game.

Theorem 6 (Hofbauer [6]). Let (A,B) be a bimatrix game and c �= 0 such that the
condition (11) holds. If (x̄, ȳ) ∈ S◦n ×S◦m is Nash equilibrium then the function

H(x,y) = c
n

∑
i=1

x̄i lnxi −
m

∑
j=1

ȳ j lny j

is the invariant for the equation (9).

Proof. Taking into account Corollary 2, we can compute

d
dt

H(x,y) = c
n

∑
i=1

x̄i
x′i
xi
−

m

∑
j=1

ȳ j
y′j
y j

=

= c
n

∑
i=1

x̄i
(
(Ay)i − xTAy

)− m

∑
j=1

ȳ j
(
(Bx) j − yTBx

)
=

= c(x̄− x)TAy− (ȳ− y)TBx =

= c(x̄− x)TA(y− ȳ)− (ȳ− y)TB(x− x̄)+ c(x̄− x)TAȳ +(ȳ− y)TBx̄ =

= c(x̄− x)T(D+ 1qT)(y− ȳ)− (ȳ− y)T(cDT + 1pT)(x− x̄) =

= c(x̄− x)TD(y− ȳ)− c(ȳ− y)TDT(x− x̄) = 0.

�
In particular, an interior stationary point (x̄, ȳ) for a c-zero-sum game is always

stable but not asymptotically stable.

4 Alternative approaches

The replicator equations studied in sections 2 and 3 represent one possible model of
selection. They possesses “nice” properties — equation (3) admits transformation to
the famous Lotka-Volterra equation, equation (9) may have the Hamiltonian. There ex-
ist people confident in the idea that a “mathematical beauty” is a necessary ingredient
in any theory pretending to describe nature; on the other hand, there also exist people
considering it suspicious as such abstract mathematical theory may express only a hu-
man way of thinking and not properties of nature itself (for discussion see e.g. [1], [9]).
Hence, in this section we introduce two alternative models of selection that take into
account additional phenomena.
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4.1 Discrete dynamics

Let us consider two populations with non-overlapping generations and assume that the
lifespan of one generation is equal to h. That is, a change in relative frequencies of
sub-populations may occur only in time instants t0,t0 + h,t0 + 2h, . . . . The populations
mutually interact and sub-populations of one population have no impact on each other.
In another words, the interaction of populations can be expressed by a bimatrix game.

Let us suppose further that relative frequency of single sub-population in a sub-
sequent generation is proportional to its frequency in a present generation and to its
“payoff” in present interaction, i.e.

xi(t + h) = c(t)xi(t)
(
Ay(t)

)
i, y j(t + h) = d(t)y j(t)(Bx(t)

)
j.

The coefficients of proportionality c and d may depend on time. The entries of time-
dependent vectors x(t), y(t) express relative frequencies of constituent sub-populations
over time, therefore a natural requirement is that the components of vectors x(t), y(t)
are non-negative and 1Tx(t) = 1 = 1Ty(t) for all t ∈ {t0,t0 + h,t0 + 2h, . . .}. The validity
of the first condition is guaranteed by non-negativity of entries of the matrices A and B,
the second condition requires that

1 =
n

∑
i=1

xi(t + 1) = c(t)
n

∑
i=1

xi(t)
(
Ay(t)

)
i = c(t)x(t)TAy(t)

and, in a similar way, 1 = d(t)y(t)TBx(t). Subsequently

c(t) =
1

x(t)TAy(t)
and d(t) =

1
y(t)TBx(t)

.

Thus, the coefficients c and d do not depend on time directly and their time change
is mediated by changing structure of populations. The provided considerations lead to
discrete analog of replicator equations in the form

xi(t + h) =xi(t)
(
Ay(t)

)
i

x(t)TAy(t)
, i = 1,2, . . . ,n,

y j(t + h)=y j(t)

(
Bx(t)

)
j

y(t)TBx(t)
, j = 1,2, . . . ,m.

(12)

A fundamental difference of this system and the continuous system (9) lies in the fact,
that the matrices A and B appearing in (9) need not be non-negative. Hence, an interpre-
tation of matrices A and B in systems (9) and (12) is different. The entry ai j of matrix
A in (12) expresses a multiplication rate from one generation to the next one of the i-th
sub-population of the first population impacted by the j-th sub-population of the second
population while in the replicator equation (9) it expresses a change in fitness of the i-th
sub-population impacted by the j-th one.

The equations (12) can be rewritten to the form

Δxi(t) = xi(t + h)− xi(t) = xi(t)
(
Ay(t)

)
i − x(t)TAy(t)

x(t)TAy(t)
,
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Δy j(t) = y j(t + h)− y j(t) = y j(t)

(
Bx(t)

)
j − y(t)TBx(t)

y(t)TBx(t)
.

This form shows that the systems (9) and (12) possess the same stationary states. In par-
ticular, stationary points of the system of difference equations (12) are Nash equilibria
of the bimatrix game (A,B).

A continuous analogy of the difference equations (12) is the following system of
differential equations

x′i =xi
(Ay)i − xTAy

xTAy
, i = 1,2, . . . ,n,

y′j =y j
(Bx) j − yTBx

yTBx
, j = 1,2, . . . ,m.

The meaning of matrices A and B appearing in this system differs from that in the
system (9).

4.2 Imitation dynamics

The replicator dynamics (3) mimics the effect of natural selection (although it blissfully
disregards the complexities of sexual reproduction). In the context of “games” played
in human societies, however, the spreading of successful strategies is more likely to
occur through imitation than through inheritance. How should we model these imitation
processes?

Let us suppose that a population consists of N individuals and these individuals
are well mixed, i.e. each individual can meet another. It may occur that an individual
adopting the j-th strategy meets an individual adopting the i-th strategy and after this
encounter he adopts the i-th strategy, that is, he imitates his behavior. Let us assume
further that a number of individuals that act in such a way during a time interval of the
length (duration) Δ t is proportional to ΔT and to probability of encounter of individuals
adopting the mentioned strategies. Let gi j be the coefficient of proportionality. The
probability that an individual adopting the i-th strategy meets an individual adopting the
j-th strategy equals to the relative frequency of individuals with j-th strategy. Hence,
the number of individuals adopting the i-th strategy after time interval Δ t is

Nxi(t + Δ t) = Nxi(t)+
n

∑
j=1

Nxi(t)x j(t)gi jΔ t −
n

∑
j=1

Nx j(t)xi(t)g jiΔ t.

Simple calculation and the limit transition Δ t → 0 yields the differential equation

x′i = xi
n

∑
j=1

(gi j −g ji)x j.

We need to specify the rates gi j appearing in this equation. It is natural to assume that
the rates depend on the current payoffs (Ax)i and (Ax) j earned by the two strategies in
the population:

gi j = ϕ
(
(Ax)i,(Ax) j

)
;
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the function ϕ defines the imitation rule. The simplest rule would be “imitate the bet-
ter”. i.e.

ϕ(u,v) =

{
1, u > v
0, u ≤ v ;

this has the disadvantage of being discontinuous. Hence, we will assume that the func-
tion ϕ is continuous and it depends on difference of its arguments, i.e. ϕ(u,v) = ψ(u−
v) where ψ is continuous non-negative and increasing function such that ψ(w) = 0 for
w ≤ 0. Now, we have

gi j −g ji = ψ
(
(Ax)i − (Ax) j

)−ψ
(
(Ax) j − (Ax)i

)
=

= sgn
(
(Ax)i − (Ax) j

)
ψ
(∣∣(Ax)i − (Ax) j

∣∣) .

Denoting Ψ(w) = (sgnw)ψ
(|w|), we obtain the equation

x′i = xi
n

∑
j=1

x jΨ
(
(Ax)i − (Ax) j

)
, i = 1,2, . . . ,n; (13)

where Ψ is increasing odd continuous function. In particular, we can take Ψ(w) =
|w|α sgnw where α is a positive number. For α = 1, this yields Ψ(w) = w. Such an
imitation rule effectively says “imitate actions that perform better, with a probability
proportional to the expected gain”; it reduces the equation (13) to the usual replicator
equation (3). In the limiting case α → 0, on the other hand, we are back to the rule
“imitate the better”.

References

1. Barrow, J. D.: Pi in the Sky: Counting, Thinking, and Being. Clarendon Press: New York,
1992 [Czech translation: Pí na nebesích. O počítání, myšlení a bytí. Mladá fronta: Praha,
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Introduction 
Genomic databases contain large amount of unprocessed data. An example of such 
database is a whole-genome shotgun (WGS) database that collects non-annotated 
nucleotide sequences. I have compiled and applied a method to search the WGS 
database to predict a gene for a particular protein from non-annotated sequences. I 
have validated the method by putting predicted proteins into context with annotated 
sequences, i.e. I have verified the accuracy of prediction. Further, I was interested if 
the proposed design is more accurate than the automatic gene annotation in the 
Ensemble genome browser. This procedure was applied to the gene of ryanodine 
receptor (ryr). Ryrs are calcium release channel proteins of the sarcoplasmic 
reticulum and they are expressed in three distinct ways: ryr1, ryr2 and ryr3. 

Methods
To search the WGS database, I used the tool BLAST that provides sequence 
similarity search. Regions of aligned annotated nucleotide sequences of gene for ryr 
proteins were used as input data; these sequences were conserved in the alignment. 
Different sequence lengths of randomly selected taxa were used subsequently. 
Retrieved sequences were then analyzed using GENSCAN. The program predicts 
genes, as well as their introns and exons. Predicted genes were then translated into 
individual proteins. Predicted proteins with length corresponding to ryr protein were 
selected and their identification was then checked using the BLAST search against a 
reference protein database. Verified sequences were collected into multiple sequence 
alignment for phylogenetic analysis. WGS sequence retrieval was reiterated until 
three consecutive BLAST searches (i.e., about 100 sequences) did not yield any other 
new sequence in which ryr protein could be predicted. 

Results
The analyses resulted into a phylogenetic tree for the gene of ryr1, ryr2 and ryr3 
proteins composed of 35 annotated amino acid sequences, 35 sequences previously 
predicted by NCBI tool GNOMON and 23 sequences predicted with my design. 
Compared to the Ensemble gene tree, my tree contains fewer species, but is stable and 
devoid of any major errors in phylogenetic classification of taxa. Thus I am able to 
verify the accuracy of prediction from the evolutionary point of view, and to identify 
incorrectly annotated sequences present in the public databases. The prediction using 
this method is sensitive enough and provides evidence for the whole-genome 
duplication in fish evolution. 
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Conclusion
In conclusion, I would like to summarize that the proposed method of gene prediction 
from non-annotated sequences works efficiently for small-scale projects and provides 
sufficiently accurate results. 
 

Mathematical modelling of biodegradable processes 

Anna Gardavská 

Faculty of Science, Masaryk University, Brno 

Introduction 
The aim of my work is to map existing methods of mathematical modelling of 
biodegradable processes. This work presents an overview of the basic processes of 
degradation of biodegradable waste, describes the anaerobic and aerobic digestion, 
and gives more detail on the problems of biogas plants operating on the principle of 
anaerobic digestion. It also describes batch systems, single or multi-phase systems, 
and discusses problems of these reactors due to the inhibition by pH, bacteria or 
ammonia. The paper gives a brief overview of available mathematical models that 
describe the process of anaerobic digestion by the system of differential equations. 
The final section deals with the implementation of one model using the software 
Maple.  

Methods and materials 
The first part of my paper presents processes of anaerobic digestion (or aerobic 
digestion) and describes stages of this process such as hydrolysis, acidogenesis, 
acetogenesis and methanogenesis. The next part describes problems of this process. 
The models presented in the work involve a model with phase separation (modified 
kinetic Monod model), a model from autors Hill and Bart (28 differential equations), 
a model BisWas (33 differential equations) and a model with distributed parameters 
(72 differential equations). 

Results
The final part of my work contains several graphs based on the simplified Hill and 
Bart model. Instead of 28 equations, the model was constructed from 10 equations. 
These graphs illustrate how the yield of the biogas (methan gas) changes with 
different concentration of ammonia or pH. This part also includes an analysis 
sensitivity test for all parameters of modified Bart and Hill models. This test clearly 
shows that pH and ammonia are the most sensitive parameters. 

Conclusion
The paper only describes some mathematical models, not all existing ones. That is 
due to a considerable number of those models, as well as the complexity of each of 
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them. The graphs based on models constructed in Maple show how the yield of biogas 
(methane or carbon dioxide) changes with the values of pH or ammonia 
concentration, which implies that it is advantageous to have such models and to have 
option to carry out studies based on mathematical models instead of conducting 
expensive real-time experiments. 
 

Enabling pathway analysis - connecting genomic 
experiments and gene ontology databases 

Hana Imrichová 
Faculty of Science, Masaryk University, Brno 

Introduction 
DNA microarray technology has made it possible to monitor the changes in the 
expression of thousands of genes between different groups of interest. The usual 
output of the analysis is a list of differentially expressed genes. A mere glance at this 
list, however, is not enough to understand the complex mechanisms within the cell 
underlying the phenotype differences between the studied groups. Here comes the big 
challenge - a correct biological interpretation of these results, which can be achieved 
by mining online databases of gene sets and biological pathways. This leads to a 
better understanding of cellular processes as an intricate network of functionally 
related components. The goal of my work was to create a wide overview of recent 
methods for gene set and pathway analysis. 

Methods and materials 
In my work, I have reviewed 25 methods of gene set analysis. These methods differ in 
several important aspects: the type of the tested null hypothesis; the type of the 
method searching for the enrichment of gene sets as well as the type of the statistical 
method to determine the significance of this enrichment; the number of samples in the 
dataset; whether the method considers both directions of expression and if unable to 
identify any enriched gene sets in individual samples. Furthermore, the methods differ 
in software implementations and the type of organism supported by the 
implementation. 
Methods are divided into 3 main categories according to the null hypothesis: 

� Competitive methods, testing whether the genes in the gene set are 
differentially expressed more than other genes. This group involves e.g.: 
Catmap (Breslin et al., 2004), GOAL (Volinia et al., 2004), PAGE (Kim and 
Volsky, 2005), GeneTrail (Backes et al., 2007). 

� Self-contained methods that consider only genes within a gene set and test, 
if there is at least one differentially expressed gene. This group is represented 
by e.g.: Globaltest (Goeman et al., 2004), PLAGE (Tomfohr et al., 2005), 
SAM-GS (Dinu et al., 2007). 
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� Mixed methods that validate whole data set and test, if there is any gene set 
with differently expressed genes. This group involves a method called GSEA 
(Mootha et al., 2003) and its two extensions. 

Results
There are dozens of methods for gene set/pathway analysis. All of them have a 
common objective, which is to assign a value to a group of genes (P-value or a score) 
in order to determine which gene set (or pathway) is enriched in the list of 
differentially expressed genes from the microarray analysis. However, the user has to 
choose a method according to the type of the dataset and questions he would like to 
have answered. I have created two tables and a simple instruction scheme to simplify 
this choice. Three main aspects have to be taken into account when choosing an 
appropriate method: 

1. The type of the data set that is analyzed (according to the number of samples 
and the type of organism). 

2. The aim of the experiment (the type of the null hypothesis, gene sets with 
both directions of expression). 

3. The programming capabilities of the user. 

Conclusion
In my work, I have created a wide review of methods for gene-set analysis together 
with the description of particular methods. Moreover, two tables and a decision 
scheme are given to choose the right method for a particular problem. Using the right 
method, the user can resolve his problem with the best results.  
 

Creation of a single initiation application with GUI 
generateb by MATLAB 

Pavlína Kre�merová 

Faculty of Science, Masaryk University, Brno 

Introduction 
Aim of the study was creating GUI (Graphic user interface) as an extension of my 
bachelor thesis that dealed with extraction of cells’ geometrical parameters in 2-D 
images from optical microscopy. 

Methods and materials 
GUI is generated by MATLAB, it is a function that we call without parameters, so it 
creates interface with buttons. When we press the button, we call this function with 
parameter (in MATLAB it is called Callback). It uses global variables due to 
parameter passing in subfunction. Inputs are haematological images obtained by and 
optical microscope.  
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Results
Outputs are labelled images, arrangement of images, histograms and outputs to Excel.  

 

Conclusion
The goal was achieved. My programme was devolved on the Department of Clinical 
Haematology, University Hospital Brno on 4 March.2010. It has been used for 
measurement of cells‘ parameters to date. 
 

Changes in long time monitoring of macrozoobenthos in 
the Czech Republic 

Simona Littnerová 

Faculty of Science, Masaryk University, Brno 

Introduction 
The European Union Water Framework Directive (WFD) was created to assess and 
preserve water quality. Predictive models are used to assess the ecological status of 
streams. These models are based on the community-environment relationship 
modelling. Knowledge of variability of community and community-environment 
relationship is therefore essential. Predictive models are based on the assumption of 
assemblage stability. However, temporal changes in the structure of communities are 
one of the factors affecting water quality assessment systems. The aim of this work 
was to analyze the temporal variability of benthic macroinvertebrates and its 
consequences for the established typology. The analyzed data come from the 
biomonitoring of streams of the Czech Republic in 2002-2005. The changes were 

155



observed in terms of both diversity indices and biotic indices describing the 
community, as well as in terms of actual changes in community composition. 
Subsequently, we tested whether the typology of sites had an impact beyond this 
change: typologies used in various types of assessment models of ecological status 
were adopted for this task. 

Methods and materials 
RM ANOVA was applied to determine the indices changes over time and under the 
influence of typology of sites; overall changes in communities composition were 
analysed by means of Procrustean  analysis, followed by a detailed analysis of 
changes of individual taxa occurrence in time. Consequently, the Spearman 
correlation coefficient was used to determine the correlation between change of 
chemical variables and change of structure of  community. 

Results

Environmental 
 parameter

Saprobiotic index Shannon index Comm. struc. 
(Procrustes resid.)   

 Year Seas. Y.×S. Year Seas. Y.×S.
2002

-
2003

2002 
-

2004 

2002 
-

2005 
Altitude � � � � � � � � � � � 

Stream order � � � � � � � � � � � 
Hydroecoregion � � � � � � � � � � � 
Land use: Fields � � � � � � � � � � � 
Land use: Forest � � � � � � � � � � � 
Abiotic typology � � � � � � � � � � � 
Biotic typology � � � � � � � � � � � 

Chem. parameter 
Biol. ox. demand        � � � 
Total phosphorus        � � � 

� NON SIGNIFICANT; � SIGNIFICANT 

Conclusion
The time-related shift in indices and the community composition was found; on the 
contrast, the influence of the localities typologies on this change was not found. The 
most significant change was recorded between 2002 and 2003. This change is a 
possible consequence of high precipitation amount and floods in 2002. The analysis 
of chemical measurements revealed the link of this change to the biological oxygen 
demand. We can conclude that the size of temporal changes of indices based on 
communities’ structure allows us to adopt sites typologies based on one-year 
sampling for systems of ecological status assessments. On the other hand, detailed 
analyses of communities on the level of species have to take into account significant 
inter-annual changes in species composition.   
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Population history of viruses causing rabies 

Ji�í Moravec 

Faculty of Science, Masaryk University, Brno 

Introduction 
Viruses causing rabies (genus Lyssavirus) are neurothrophic viruses that are 
potentially fatal to warm-blooded animals. Lyssavirus is commonly transmitted by a 
bite from an infected individual. Thanks to animal vaccination in developed countries, 
the pathogen was eliminated from most ground animal reservoirs of rabies. Several 
reservoirs of rabies still remain, such as bat or megabat populations. 
My aim is to fully reconstruct phylogeny of all Lyssaviruses in order to better 
understand their evolution. 

Methods and materials 
I have been working with complete sequences of lyssavirus CDS of N-gene, gene for 
nucleoprotein, which is a protein that binds to DNA. Its evolution is largely 
independent on the selective pressure caused by the co-evolution of the virus and the 
immune system of the host. The sequences were downloaded from the NCBI 
GenBank database using the Geneious programme. All complete CDS for 
nucleoprotein were aligned in BioEdit, and the RAxML programme was used to 
perform the final maximum likelihood analysis using polybenche Black Box online 
service.

Results
All major bifurcations were supported by high bootstrap values (>75) and divided the 
phylogenetic tree into two major groups. The first group consisted of viruses 
potentially dangerous for humans. Viruses in the second group have not caused 
fatalities in humans, or are described from very few human infections. 
 

Phylogroup 1 Phylogroup 2 

European bat lyssavirus 1 
(EBLV-1) 

European Bat lyssavirus 2 
(EBLV-2) 

West Caucasian bat virus 
(WCBV) 

Australian bat virus 
(ABLV) 

Duvenhage virus (DUVV) Shimoni bat virus 
(SHIBV) 

Irkut virus (IRKV) and 
Ozernoe 

Khujand virus (KHUV) Mokola virus (MOKV) 

Aravan virus (ARAV) Rabies virus (RABV) Lagos bat virus (LBV) 

Rabies virus and Mokola virus are the most derived in phylogroups 1 and 2, 
respectively. European bat lyssavirus 1 and Aravan virus are the most similar to 
Lyssavirus common ancestor. Rabies virus, Australian bat lyssavirus, Lagos bat virus, 
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and possibly also Mokola virus have high intraspecific variability. Low genetic 
variability was found in European bat lyssavirus 1. Sample sizes from other viruses 
are too small to assess their genetic variability. 

Conclusion
I was able to fully reconstruct Lyssavirus phylogenetic tree with the basic sculpture of 
7 original genotypes assembled into two phylogroups as it was previously classified, 
but with much larger sampling and including newly described viruses. The positions 
of new viruses correspond to other studies, but to date this is the first study analyzing 
all known genotypes. 
 

Computational simulation of environmental pollution 
using Maple 

Markéta Novotná 
Faculty of Science, Masaryk University, Brno 

 
 

Introduction 
Maintenance of high water quality is a key problem for water management officials 
and for appropriate research centres nowadays. Computer simulation models play a 
crucial role in predictions and various analyses. There are numerous water quality and 
hydrodynamic models that have been used for surface water systems such as rivers, 
lakes, reservoirs and estuaries.  
Aquatic ecosystems are very complex systems of physical, chemical and biological 
interactions. The occurrence of nutrients can bring about changes to the structure of 
ecosystem (the loss or overgrowth of fundamental organisms).  
This work is focused on water pollution and models used in this area. Its aim is to 
predict the phosphorus concentration in selected water bodies.  

Methods and materials 
The CE-QUAL-W2 is a two-dimensional (longitudinal-vertical) water quality and 
hydrodynamic computer simulation model that was developed at the Portland State 
University in the US and has been used in many river, reservoir, lake and estuary 
applications. In this work, the model has been applied to DeGray Lake in Arkansas, 
USA.  
The main part deals with the classical modelling approach using the basic and 
modified ELS-model. The phosphorus concentration in a lake is described by the 
following differential equations: 
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V = a • t + b … lake volume, 
dC/dt … change of phosphorus 
concentration in the lake per unit of 
time, 
C … phosphorus concentration in 
the lake, 
Cin … phosphorus concentration in 
the tributary, 
Q … tributary water discharge to 
the lake, 
Q1 … averaged inflow, Q2 … 
averaged outflow, 
KT … turnover rate of phosphorus 
in the lake. 

 

Results
Capabilities of two basic models have been tested on measured data from the Brno 
Dam. Results for the first five months of 2008 are shown in Table 1.  

TAB.1: COMPARISON OF BASIC AND MODIFIED ELS-MODEL TO MEASURED DATA, 
P [MG/L]. 

date field data basic model modified model 
09/01/08 0.050 0.050 0.050 
04/02/08 0.048 0.067 0.075 
05/03/08 0.077 0.057 0.054 
31/03/08 0.027 0.121 0.175 
06/05/08 0.031 0.068 0.085 

We can see that the concentration predictions of the basic and the modified model are 
nearly the same. Detailed insight into studied area could support better agreement 
with field data.  

Conclusion
This work reviews several water quality models. The complex CE-QUAL-W2 model 
was used on a testing data set, while the classical and the modified version of ELS-
model were applied on phosphorus concentration predictions in the Brno Dam. All the 
computations were performed in the Maple system. 
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Bioclimatic modelling 

Roman Richard Št�rba 

Faculty of Science, Masaryk University, Brno 

Introduction 
Kuneš (2008) tested a hypothesis that the glacial pollen spectrum of central Europe 
and recent pollen spectrum of southern Siberia are analogous and he proved the 
hypothesis to be true. Based on his work, I have focused to create a model of glacial 
vegetation of central Europe based not on pollen spectra but on the plant growing in 
southern Siberia. 

Methods and materials 
The main part of my work was a review of presence-only based models used in 
bioclimatic modelling. Out of those, I eventually chose two: bioclimatic envelopes 
and ENFA (ecological niche factor analysis). 
Bioclimatic envelope modelling is a simple model based on creating 
multidimensional convex envelope, each of its borders being based on minimum and 
maximum of particular ecological variable. 
ENFA is a factor-based model. The first factor axis shows all the marginality – the 
difference between the optimum of species distribution and optimum of the whole 
tested area. Other axes, on the other hand, show the rest of variability. 
In my work, I have used an available data set collected in southern Siberia. It 
contained data from 702 localities, each containing information about the 
environmental variables and the occurrence of species. Another data set which was 
used for modelling contained the whole tested area in the grid of 1 x 1 km. 

Results
The main benefit of my work is the proof that the distribution of vegetation is really 
based on bioclimatic variables, as bioclimatic envelopes which are generally supposed 
to give bad prediction actually gave good prediction. This means that the examination 
of other bioclimatic models is necessary in order to find those which give the best 
predictions possible. 
As I mentioned before, bioclimatic envelopes are expected to give bad predictions as 
they do not concern any correlation among used variables. The best prediction proved 
to be 78 % well-predicted presences, though. 
ENFA, due to its user unfriendly implementation and interface in Biomapper, gave 
only a raster output, so its prediction ability could not have been compared with 
bioclimatic envelopes. 
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Evaluation of Stress Test ECG Signal Parameters in 
Horses 

Jana Sva�inová 
Faculty of Science, Masaryk University, Brno 

Introduction 
Examination and measuring of parameters of stress ECG is one method for the 
assessment of horses’ health. The term “stress” here means exercise (such as walk, 
gallop, trot) on a conveyor-belt, while the ECG is being scanned. Basic processing of 
signal consists of QRS complexes detection and cardiac cycles length assessment. 
The detection is essential in order to establish other parameters, such as T-waves. 
QRS complexes detection in stress ECG is more complicated, because the horse’s 
movements influence the measurement: consequently, significant unwanted effects 
appear in the signal. The goal of this work is to process and conveniently modify the 
horse’s ECG to detect QRS complexes or eventually T- waves. This is performed 
using the computer programme Matlab. 

Methods and materials 
The ECG report consists of three recordings which were scanned at a sampling 
frequency of 500 Hz. Initially, each recording is subject to filtration that points out 
QRS complexes in a signal. Consequently, each recording is smoothened by a 
rectangular window; and finally, individual recordings are amplified and summarized. 
In this way, we have successfully created a signal with distinctive peaks at QRS 
complexes. This signal is also suitable to detect T-waves, which are also clearly 
visible. 
The principle of detection consists in the search of peak values of modified signal, 
that follow crossing of the detection threshold with QRS complex peak. The detection 
threshold is set to be one third of average of last three peak values. The detector also 
includes a zone that follows positive detection of a complex, in which next complex 
can't be detected. This tone is useful in case of high T-waves, or possibly extrasystols. 
Therefore, an important part of this work consisted in the search of best setting of a 
detector depending on the type of horse’s exercise and, consequently, on the length of 
cardiac cycles, in order to perform the detection as accurately as possible. 
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Results
CHART 1: RESULTS OF A QRS COMPLEXES DETECTION FOR TWO-MINUTE RECORDING 

TYPE OF 
EXERC. 

 

AMOUNT OF 
QRS 

COMPLEXES 
DETECTED 

AMOUNT OF 
MISSED 
QRS 

COMPLEXES

AMOUNT OF 
FALSELY  

DETECTED 
QRS 

COMPLEXES

DETECTOR 
HIT RATE 

(%) 

AVERAGE 
LENGTH OF 

CARDIAC 
CYCLE (S) 

STAND. 
DEV. 

WALK 177 0 0 100 0,68 0.06 
CANTER 254 2 0 99,2 0,46 0,05 

TROT 281 19 0 93 0,37 0,03 

The hit rate of detection is best in case of a walk. With a higher speed 
of horse’s movement, the ECG signal is being strongly disturbed and 
T-waves (which can be mistaken with QRS complex) start to appear. 
However, by a proper setting of detector parameters, it is possible to 
increase the hit rate of detection. Furthermore, we can see a 
considerable variability of cardiac cycle lengths. 

Conclusion
This detector is able to detect QRS complexes at walk and canter successfully. In case 
of trot, the detector does not work as efficiently as in the previous cases. 
 

The application of clustering methods on data of clinical 
registries

Bc. Hana Švihálková 

Faculty of Science, Masaryk University, Brno 

Introduction 
On many occasions, biologists collecting specific data ask whether their observations 
belong to any natural groups and if so, how many groups are there and which 
observations belong to each group. 
The aim of this work is to try and detect these groups in clinical trials, and to classify 
patients into these groups. 

Methods and materials 
The first part of this work is focused on the background research of methods of cluster 
analysis. In the next part, some of these methods are applied on selected clinical 
registries. 

162



The software used in this work included Statistica for Windows, Matlab and 
Microsoft Office Excel. 
Firstly, coefficients of association (Sokal-Michener, Rogers-Tanimoto, Hamann, 
Russel-Rao, Jaccard and Dice) were used to input data from the registry AHEAD 
(Acute HEArt failure Database, clinical registry for the monitoring and treatment of 
acute heart failure). 
Secondly, the Principal Component Analysis (PCA) was used on these data in order 
to find whether they are correlated or not, and to select the most suitable parameters 
for further analyses. 
And finally, hierarchic agglomerative clustering algorithms and partitional clustering 
methods were applied to both categorical and continuous data from the PCA. 

Results
The coefficients of association applied to the input data were helpful when a new 
patient appeared. The most similar patients were found, allowing us to assess how the 
condition of this patient might develop. 
The clustering methods divided patients according to selected parameters and 
depicted their mutual distance in a multidimensional space. Moreover, these methods 
have discovered some duplicities, i.e. patients who were recorded twice in this 
registry. 

Conclusion
Using the available literature, various methods of dealing with clinical data were 
found, and cluster analysis divided them into natural groups. 
At this time, an algorithm is being prepared to reveal duplicate or similar patients in a 
clinical registry. This algorithm should be implemented into the TRIALDB system. 
 

Acquiring knowledge on anticancer chemotherapy from 
health insurance claims data 

Bc. Alena Zo�áková, Supervisor: RNDr. Daniel Klimeš 

Faculty of Science, The Institute of Biostatistics and Analyses, Masaryk University, Brno 

Introduction 
The chemotherapy is currently an important and much discussed way of treatment of 
malignant diseases. Specifically, it is a treatment with an anti-tumour effect using the 
so-called cytostatic agents, which affect the growth cycle of cancer cells and stop 
their division, or alleviate the symptoms of the disease. Those cytostatic agents 
usually given in various combinations, cycles, and setting of doses, i.e. in various 
regimens to enhance the therapeutic effect, to reduce the cumulation of adverse 
effects, and to prevent the resistance of the organism to the applied medicament. 
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Currently, the electronic library DIOS contains 214 pre-set regimens and it is still 
being updated according to the “Guidelines on cytostatic treatment of malignant 
tumours“ which are regularly released by the Czech Society for Oncology at the 
Czech Medical Association of J. E. Purkyne (CzMA JEP). Actually, there are much 
more applied regimens worldwide. This paper therefore aims to detect the applied 
regimens, to search for them in available resources, and to extend the digital library in 
this way.   

Methods and materials 
This work involved the design and test of an algorithm, as well as the assessment of 
clinical relevance of differences among regimens. It was implemented on data of 
medical facilities in between 1 February 2007 and 11 September 2009. The data 
consisted of 1,870 patients’ records and 2,094 applied chemotherapies. After a 
subsequent correction and analysis, the data was compared to standard chemotherapy 
regimens, which originated in the electronic library of the DIOS project. After the 
comparison to scientific literature, the data of the years 2008, 2009, and 2010 were 
summarised, revised and analysed.  The algorithm was designed in PL/SQL language 
(Procedural Language/Structured Query Language) and the obtained data was 
processed by the database software Oracle.  

Results
The suggested algorithm enables the diversification of practically applied regimens 
based on the type of administered cytostatic agents (step 1), on the length of the cycle 
of given substances (step 2), and on the range of given doses (step 3). The applied 
procedure distinguishes and entitles applied chemotherapy regimens and compares 
them to standard regimens from digital library (approximately 70% recognised 
applied regimens). Finally, the algorithm evaluates the compliance with the dose 
intensity in clinical practice (the most accurately dosed chemotherapy regimens in 
cases of breast cancer – C50). Another advantage of the suggested algorithm is the 
detection of potential mistakes and uncertainty in the application of chemotherapy 
regimens, which can be analysed and evaluated in cooperation with specialists. This 
brings about an improvement of the digital library, and increases clarity and accuracy 
of practical regimens’ applications in a certain medical facility. 

Conclusion
As a result, the algorithm proves a relatively high success rate in the recognition and 
evaluation of applied regimens. However, it is necessary to deal with certain issues, 
e.g. the recalculation of doses to the patient’s weight (not to a body surface), or an 
assessment of the cycle’s length when the cytostatic agent is given repeatedly within 
one cycle. Finally, due to applied methods and the implementation of various sets of 
chemotherapy data, the procedure becomes universal; therefore, it fulfils its long-term 
aim – to distinguish and to entitle applied chemotherapy regimens and to evaluate the 
adherence of dose intensity in clinical practice in various medical facilities on the 
whole territory of the Czech Republic. It can also enhance the quality of cancer 
patients treatment. 
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